天天看點

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

作者:植物保護博士在讀
果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)
果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

根據對蘋果器官的緻病性差異可将蘋果炭疽葉枯病劃分為兩種緻病類型:苦腐型(ABR pathotype)和葉枯型(GLS pathotype)。

苦腐型僅侵染近成熟果實,引起典型腐爛症狀,但不侵染葉片,對品種無選擇性,該類病害通常稱為苦腐病(apple bitter rot,ABR),或蘋果炭疽病(Southworth 1891;Sutton 1990)。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

蘋果

葉枯型能侵染葉片和幼果,對品種有嚴格的選擇性,主要危害嘎拉系、金冠系和元帥系蘋果品種,引起炭疽葉枯病(Leite et al. 1988;Sutton & Sanhueza 1998)。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

本研究通過基因功能證明Cfcyp450是一個葉枯型菌株關鍵緻病基因。同源性比對顯示C. fructicola葉枯型基因Cfcyp450與C. aenigma葉枯型基因相似度為100%,為同源基因,但在C. fructicola苦腐型菌株基因組中不存在該基因。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

蘋果

此外Cfcyp450與已知煙草内生真菌Sodiomyces alkalinus F11和拟南芥内生真菌Dactylonectria macrodidyma同源性相對較高(劉宏玉 2014; Grum-Grzhimaylo et al. 2018;Habibi & Ghaderi 2020;Kuvarina et al. 2021),與刺盤孢屬真菌親緣關系較遠,同源性低。

這些結果暗示苦腐型菌株可能通過一些内生真菌的基因水準轉移獲得能侵染葉片的獨特基因,進而變成葉枯型菌株,該假設有待進一步的試驗驗證。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

真菌的P450基因為一類重要緻病基因,可通過參與次級代謝産物的合成來影響真菌的緻病 性。

最近對植物病原菌CYP基因的功能分析中發現一些新的CYP基因,涉及毒性、無性發育和有性發育以及外源生物的降解。灰葡萄孢Botrytis cinerea P450單加氧酶基因bcbot1在植物中表達,對B. cinerea的侵染發揮重要作用(Verena et al. 2005)。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

蘋果

大麗輪枝菌Verticillium dahliae的T-DNA突變體M01C06緻病性下降,其單加氧酶基因VdCYP1是關鍵緻病相關因子,可能通過參與大麗輪枝菌的次級代謝影響緻病過程(Zhang et al. 2016)。

稻瘟菌Magnaporthe oryzae中鑒定到MOMCP1,通過影響附着胞的形成而增強緻病力( Wangetal.2019)。尖豌豆專化型Foxysporum f.sp.pisi 晚豆素脫甲基酶FOPDA能夠對植保索豆素進行解毒促進其侵染( Georgeet al. 1998;Coleman et al.2011)。

本研究顯示果生刺盤中Cfcyp450基因含有保守的CYP450結構域,通過影響附着胞的形成及穿透而影響緻病力,是否參與解毒作用、次級代謝産物的合成來影響真菌的緻病性尚有待進一步研究。

果生刺盤孢侵染蘋果緻病關鍵基因Cfcyp450的功能(三)

果生刺盤抱為半活體營養菌。分生抱子萌發産生芽管,芽管末端膨大形成附着胞,附着胞通過産生侵染釘穿透寄主角質層和表皮細胞,分化形成活體初生侵染菌絲,初生侵染菌絲随後分化形成次生侵染菌絲,以死體營養方式在組織内擴充( Crusius etal. 2002; Shang etal.2020)。

果生刺盤抱為一種寄主範圍非常廣泛的病原菌,近年來對其緻病基因功能進行了許多研究。油茶果生刺盤抱 bZIP 轉錄因子 CfHacI 和自噬相關因子 CfAtg8 參與調控 ccticola 的生長發育、附着胞的形成、緻病力及響應外界滲透壓的脅迫過程(姚權等 2019: 郭源等 2020)。

果炭疽葉枯病病原果生刺盤抱轉錄因子 CfStel2 基因缺失後其分生子萌發率、附着胞形成率顯著下降并喪失對嘎拉葉片和果實的緻病性(Liu etal.2020)。C. ucticola 的 MAPK 基因 CfPMKI敲除突變體不能分化形成附着胞,是以不能穿透角質層,緻病力顯著下降 ( Liang et al 2019)。

C.fructicola 的 MADS-box 轉錄因子 CMcmI調控緻病性分生抱子萌發和性發育(Liu etal.2022)。本研究中發現蘋果果生刺盤抱 Cfcyp450 缺失突變體産抱量下降、附着胞的萌發和穿透降低,緻病力顯著減弱,我們推測 Cfcyp450 通過影響果生刺盤抱附着胞的萌發和穿透,導緻其緻病力減弱。有關 Cfcyp450對緻病性的具體機制還有待進一步的探索。

[REFERENCES]

Coleman JJ, CC Wasmann, Usami T, White GJ, Vanetten HD, 2011. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. Molecular Plant-Microbe Interactions, 24: 1482 1491

Crusius LU, Forcelini CA, Sanhueza RMV, Fernandes JMC, 2002. Epidemiology of apple leaf spot. Fitopatologia Brasileira, 27: 65-70

Fu DD, Wang W, Qin RF, Zhang R, Sun GY, Gleason ML, 2013. Colletotriclum fructicola, first record of bitter rot of apple in China. Mycotaxon, 126: 23-30

George HL, Hirschi KD, Vanetten HD, 1998. Biochemical properties of the products of cytochrome P450 genes (PDA) encoding pisatin demethylase activity in Nectria haematococca. Archives of Microbiology, 170: 147-154

Grum-Grzhimaylo AA, Falkoski DL, van den Heuvel J, Valero-Jiménez CA, Min B, Choi IG, Lipzen A, Daum CG, Aanen DK, Tsang A, Henrissat B, Bilanenko EN, de Vries RP, van Kan JAL, Grigoriev IV, Debets AJM. 2018. The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet. Molecular Ecology, 27: 4808-4819

Guo Y, Li H, Zhou GY, Liu JA, Zhang SP, 2020. Functional analysis of the autophagy-related protein CfAtg8 in Colletotrichum fructicola. Mycosystema, 39: 1-12 (in Chinese)

Habibi A, Ghaderi F, 2020. First record of Dactylonectria macrodidyma causing black root rot on strawberry. Mycologia Iranica, 7: 241-246

Han XL, Bai JK, Zhang W, Zhang R, Sun GY, 2016. PEG-mediated transformation of Colletotrichum fructicola. Acta Agriculturae Boreali-occidentalis Sinica, 25: 442-449 (in Chinese)

Kuvarina AE, Georgieva ML, Rogozhin EA, Kulko AB, Gavryushina IA, Sadykova VS, 2021. Antimicrobial potential of the alkalophilic fungus Sodiomyces alkalinus and selection of strains-producers of new antimicotic compound. Applied Biochemistry and Microbiology, 57: 86-93

Leite RP, Tsuneta M, Kishino AY, 1988. Ocorrencia de mancha foliar de Glomerellaem maicieira no estado do Parana. Fundaq ao Institito Agronomico do Parana. Informe de Pesquisa, 1988: 81

Li BH, Wang CX, Dong XL, 2013. Research progress in apple diseases and problems in the disease management in China. Plant Protection, 39: 46-54 (in Chinese)

Li M, Shen B, Li S, 2006. Horizontal gene transfer in biofilms and its induced bioenhancement. Chinese Journal of Applied and Environmental Biology, 12: 441-444

Liang XF, Shang SP, Dong QY, Wang B, Zhang R, Gleason ML, Sun GY, 2018. Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola. BMC Genomics, 19: 557

Liang XF, Wei TY, Cao MY, Zhang X, Liu WK, Kong YY, Zhang R, Sun GY, 2019. The MAP kinase CfPMK1 is a key regulator of pathogenesis, development, and stress tolerance of Colletotrichum fructicola. Frontiers in Microbiology, 10: 1070

Liu HY, 2014. Diversity of endophytic fungi in tobacco and screening on strains with growth-promoting and heavy metal resistant. Master Thesis, Zhejiang University, Hangzhou. 1-72 (in Chinese)

Liu WK, Liang X, Gleason ML, Liu WK, Liang XF, Gleason ML, Cao MY, Zhang, R, Sun, GY, 2020. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis. Applied and Environmental Microbiology, 87: 2212-2220

Liu WK, Han L, Chen JZ, Liang XF, Wang B, Gleason ML, Zhang R, Sun GY, 2022. The CfMcm1 regulates pathogenicity, conidium germination, and sexual development in Colletotrichum fructicola. Phytopathology, DOI: 10.1094/PHYTO-03-22-0090-R

Rockenbach MF, Velho AC, Gonçalves A E, Mondino PE, Alaniz SM and Stadnik MJ. 2016. Genetic structure of Colletotrichum fructicola associated to apple bitter rot and Glomerella leaf spot in southern Brazil and Uruguay. Phytopathology, 106: 774-781.

Shang SP, Liang XF, Liu GL, Zhang S, Lu ZX, Zhang R, Gleason MK, Sun GY, 2020. Histological and ultrastructural characterization of the leaf infection events of Colletotrichum fructicola on Malus domestica ‘Gala’. Plant Pathology, 69: 538-548

Southworth EA, 1891. Ripe rot of grapes and apples. The Journal of Mycology, 6: 164-173

Sutton TB, 1990. Bitter rot. In: Jones AL, Aldwinckle HS (eds.) Compendium of apple and pear diseases. The American Phytopathological Society, St. Paul, MN. 15-16

Sutton TB, Sanhueza RM, 1998. Necrotic leaf blotch of Golden delicious-Glomerella leaf spot: a resolution of common names. Plant Disease, 82: 267-268

Velho AC, Alaniz, S, Casanova L, Mondino P, Stadnik MJ, 2015. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biology, 119: 229-244

Verena S, Muriel V, Daniel JT, Isidro GC, Christian SG, Jean-Marc P, Bettina T, Paul T, 2005. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor, Molecular Plant-Microbe Interactions, 18: 602-612

Wang CX, Zhang ZF, Li BH, Wang Y, Dong XL, 2012. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China. Plant Disease, 96: 912

Wang GH, 2010. Functional study of AMT1 gene in Fusarium graminosa. Master thesis, Northwest A&F University, Yangling. 1-77 (in Chinese)

Wang W, Fu DD, Zhang R, Sun GY, 2015. Etiology of apple leaf spot caused by Colletotrichum spp. Mycosystema, 34, 13-25 (in Chinese)

Wang W, Liang XF, Zhang R, Gleason ML, Sun GY, 2017. Liquid shake culture overcomes solid plate culture in inducing conidial production of Colletotrichum isolates. Australasian Plant Pathology, 46: 285-287

Wang Y, Wu Q, Liu LN, Li XL, Lin AJ, Li CY, 2019. MoMCP1, a cytochrome P450 gene, is required for alleviating manganese toxin revealed by transcriptomics analysis in Magnaporthe oryzae. International Journal of Molecular Sciences, 20: 1590

Weir BS, Johnston PR, Damm U, 2012. The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73: 115-180

Yao Q, Guo Y, Wei FY, Li SZ, Zhang SP, Li H, 2019. A bZlP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in Colletotrichum fructicola. Mycosystema, 38: 1643-1652 (in Chinese)

Zhang DD, Wang XY, Chen JY, Kong ZQ, Gui YJ, Li NY, Bao YM, Dai XF, 2016. Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae. Scientific Reports, 6: 27979

[附中文參考文獻]

郭源, 李河, 周國英, 劉君昂, 張盛培, 2020. 自噬相關蛋白CfAtg8在果生刺盤孢中的功能分析. 菌物學報, 39: 1-10 韓小路, 白靜科, 張玮, 張榮, 孫廣宇, 2016. PEG介導的蘋果果生刺盤孢Colletotrichum fructicola原生質體轉化. 西北 農業學報, 25: 442-449

李保華, 王彩霞, 董向麗, 2013. 大陸蘋果主要病害研究進展與病害防治中的問題. 植物保護, 39: 46-54

劉宏玉, 2014. 煙草内生真菌多樣性及促生和抗重金屬菌株的篩選. 浙江大學碩士論文, 杭州. 1-72

王光輝, 2010. 禾谷鐮刀菌AMT1基因的功能研究. 西北農林科技大學碩士論文, 楊淩. 1-77

王薇, 符丹丹, 張榮, 孫廣宇, 2015. 蘋果炭疽葉枯病病原學研究. 菌物學報, 34: 13-25

姚權, 郭源, 魏豐園, 李司政, 張盛培, 李河, 2019. bZIP轉錄因子CfHac1參與調控果生刺盤孢菌的生長發育和緻病 力. 菌物學報, 38: 1643-1652