天天看點

量子相變簡介

作者:返樸
量子相變簡介

​本文簡要介紹經典相變與量子相變的不同之處,以及量子相變的特點,并舉例幾種典型的量子相變及相關模型應用,如拓撲費米子凝聚和超流-絕緣體相變;其中量子Rabi模型近年來在量子資訊、量子光學等領域起到重要作用。

撰文 | 陳越(理論實體研究所2023屆博士生畢業生;導師:陳曉松教授;研究方向:統計實體與複雜系統)

量子多體系統的相變在自然形成的系統(如凝聚态)和通過冷原子氣體産生的人造系統中吸引了大量的理論和實驗研究[1-14]。相變是當系統的一個參數(序參量)通過某一個特殊值(相變點)時系統狀态發生的根本變化。相變點兩側的狀态以不同類型的序為特征,通常是從對稱或無序狀态(包含哈密頓量的某種對稱性)到對稱性破缺或有序态(不具有該對稱性),盡管哈密頓量仍然擁有這種對稱性。

經典(熱力學)相變是有限溫度下的相變,是粒子的熱運動和互相作用彼此競争的結果。對于系統的穩定相,自由能取極小值,而自由能由系統的内能與代表無序度的熵在給定溫度下抗衡的結果決定。例如,水的自由能曲線與冰的自由能曲線在0°C(在一個标準大氣壓下)時相交,0°C就是水的冰點,高溫下水的自由能低,低溫時冰的自由能低,是以水在高溫下呈液态,在低溫下呈固态。那麼,在絕對零度下,系統還會發生相變嗎?按照經典實體的看法,零溫時沒有熵,是以不應該再有相變,例如水中的分子都處在能量最低的位置不動,構成一種冰,隻有唯一的相。然而事實并非如此。微觀粒子的運動實質上并不遵循經典的牛頓力學,而應該由量子力學描述。經典相變可以完全由熱力學描述,并不需要用到量子力學,但在零溫時發生的相變則需要量子力學描述。按照量子力學中的不确定性原理,微觀粒子的位置和動量不能同時測定。是以,在絕對零度,粒子仍然不會停下運動,還有所謂的“零點能”,這種零點能導緻量子漲落,就像熱運動導緻熱漲落。是以,在絕對零度時粒子的動能和勢能的競争會導緻不同相的存在以及它們之間的相變。與有限溫度下經典的熱力學相變不同,這裡起作用的不是熱漲落,而是量子漲落。量子漲落會造成體系從有序到無序的轉變。

量子相變簡介

有人可能認為,根據熱力學第三定律,絕對零度是不可能達到的,是以讨論這種絕度零度下的相變沒有實際意義,其實不然。與經典臨界現象類似,量子臨界現象也由一些普遍的規律描述,在很多時候,系統在非零溫下的性質是由量子相變點決定的。

與經典相變不同,量子相變隻能通過改變零溫時的實體參數(如磁場或壓強)來實作。在零溫時平衡态系統總是處于其最低能量态(如果最低能量是簡并的,則處于簡并态同等權重的疊加态)。量子相變描述的是多體系統的基态由于量子漲落發生的突變,可以是二級相變。量子相變發生在量子臨界點,此時量子漲落驅動關聯長度發散。

拓撲費米子凝聚量子相變是一個例子。在三維費米液體的情況下,這種相變将費米面轉變成費米體。這樣的相變可以是一級相變,因為它将費米面這種二維結構轉變成三維的。其結果是,費米液體的拓撲電荷突變,因為它隻能取離散值。另一個例子是光阱中稀薄原子的“超流-絕緣體”相變。1995年用雷射冷卻、磁俘獲和蒸發冷卻的方法實作了稀薄的铷原子氣體的玻色-愛因斯坦凝聚。最早的實驗是把氣體分子俘獲在一個勢阱中,實作凝聚。有人用雷射駐波的方法形成一個勢阱和勢壘的點陣。當溫度降到幾十個納開爾文( 10^(-9)K)時産生玻色-愛因斯坦凝聚,從逃逸氣體分子的速度分布在原點附近可以觀察到一個很尖銳的峰,同時還有一些衛星峰,反應周期性的勢壘。這說明分子可以在勢壘中移動(隧道效應),因為這些衛星峰是衍射造成的。如果把勢壘提高,當超過一定門檻值後,中心的峰和衛星峰都消失了,變成了模糊的一片。這說明粒子不能在勢壘中移動,被“局域化”了。前一種狀态被稱為“超流”态,而後一種狀态被稱為“絕緣體”态。這裡的“超流-絕緣體”相變是量子相變,因為其是量子漲落引起的,而不是熱漲落。

量子力學建立起來後發展出的固體能帶論解釋了為什麼有些金屬是導體,而有些金屬是絕緣體。後來的研究發現有些材料按能帶論應該是金屬,而實際卻是絕緣體。進一步的研究表明,這與電子間的庫侖排斥有關,簡單的單個粒子運動的圖像不可描述,這類材料被稱為“莫特絕緣體”。研究這種絕緣體在摻雜和加壓等條件下變為導體的相變是個熱門課題,它與有廣泛應用前景的高溫超導體的研究有關。有人認為,冷原子的玻色-愛因斯坦凝聚研究為解決這個難題提供了新的途徑:用實驗手段直接調控這種相變。

量子相變簡介

量子Rabi 模型描述了光子場與二能級原子系統之間的互相作用,是研究光-物質互相作用最簡單的模型之一,其起源于80 多年前的半經典模型。那時,Rabi 引入了一個模型來讨論快速變化的弱磁場對具有核自旋的定向原子的影響[19, 20]。最簡單的情況對應于兩量子态系統。原子的運動用量子力學描述,場被視為經典旋轉場。Bloch 和Siegert 後來讨論了非旋轉交變場的影響[21],他們發現了共振位置的偏移——現在稱為Bloch-Siegert 偏移。在驅動超導量子比特的實驗中已經觀察到這種偏移[22]。

Jaynes 和Cummings 在1963 年引入了一個類似的量子模型,描述了一個與光腔的量子化模式互相作用的二能級原子[23]。他們最初的目标是研究輻射的量子理論與相應的半經典理論之間的關系。盡管它很簡單,但量子Rabi 模型在當時并不被認為是精确可解的。為了求解這個模型,采用了旋轉波近似。在這種稱為Jaynes–Cummings (JC) 模型的近似中,反向旋轉項被忽略,結果證明這是與許多實驗相關的近共振和弱耦合參數區域的有效近似。JC 模型很容易求解,并已非常成功地應用于了解一系列實驗現象,例如真空Rabi 模式分裂[24]和量子Rabi 振蕩[25]。

在工程量子系統的重要實驗發展中,所有相關系統參數都是可調的,進而可以達到新的量子耦合區域。這些系統包括耦合到微波波導諧振器[26-29]、LC 諧振器[30-32]和機械諧振器[33-35]的超導量子比特。特别是,可以達到超強耦合區域。此外,在飛秒雷射寫入的波導超晶格中,已經實作了深度強耦合狀态下量子Rabi 模型的經典模拟器[36]。另外,已經報道了在超強耦合狀态和更強的耦合狀态下的超導量子比特諧振器電路的結果[37, 38]。在這種耦合區域中,通常的旋轉波近似不再有效,反向旋轉項也不容忽視。JC 模型失效的直接證據已被報道[26]。人們已經提出了各種方法來解決強耦合區域的問題,包括後來被稱為廣義旋轉波近似的方法[39-45],用于獲得量子Rabi 模型的本征譜的連續近似。基于此,人們預測了反向旋轉項引起的一些有趣現象[46-52]。

在另一個方面的發展中,Braak 在2011年發現量子Rabi 模型是精确可解的。Braak 在解析函數的Bargmann–Fock 空間中給出了量子Rabi 模型的精确解,導出了确定能譜的條件[53, 54]。随後,其他研究者通過Bogoliubov 變換重制了這個條件[55]。進一步發現,量子Rabi 模型的解析解可以用合流Heun 函數給出[56, 57],其中出現著名的Judd 孤立精确解[58]作為定義合流Heun 函數的無限級數的截斷。Braak 對量子Rabi 模型的解析解引導了對量子Rabi 模型各種已知推廣模型的完整本征譜的解決方案浪潮。

現在,随着探測強[59, 60]、超強[26, 31, 61]和深強[27,28]耦合區域的快速實驗進展,量子Rabi 模型備受關注[40, 42, 46, 53, 55, 56, 62-78],它在量子光學[23]、凝聚态實體學[79]和量子資訊[80]中起着重要作用。人們需要獲得其量子相變的性質。雖然量子Rabi 模型的解析解已經得出,但它不是閉合形式的,不能直接應用于量子相變的研究,是以通常采用近似解析(如微擾論)和數值方法研究量子相變。對于單模腔場的量子Rabi模型,Hwang等人在2015年發現其存在從正常相到超輻射相的二階相變,并研究了其臨界行為和動力學[16]。Shen等人在2021年提出了隻涉及量子化電場與原子自旋一個分量的互相作用的雙模量子Rabi 模型哈密頓量,其基态相圖與單模量子Rabi模型一緻,隻是臨界點不同[82]。Chen等人在2023年研究了同時包含量子化電場與原子自旋一個分量的互相作用以及量子化磁場與另一個自旋分量的互相作用的雙模量子Rabi哈密頓量[95],發現其基态相圖包含四個相:正常相、電超輻射相、磁超輻射相和電磁超輻射相,四個相的交彙點是四重臨界點。從正常相到電超輻射相和磁超輻相的相變是二階的,序參量為平均光子數,并且這種相變打破了離散空間反射不變性。從電超輻射相到磁超輻射相的相變是一階的。如果集體的原子-光子耦合強度參數相等,則存在連續幺正變換不變性。這種連續幺正變換不變性在電磁超輻射相中失效,因為該相是無限簡并的。在激發能譜中,存在三條臨界線,其中激發能變為零并且出現Nambu-Goldstone 模式。激發能和光子數的臨界指數與單模量子Rabi 模型相同[95]。

除了兩能級的模型之外,雙模腔場與三能級系統之間的互相作用導緻許多重要現象,例如電磁感應透明[83]和暗态[84],這些現象在相幹量子态的捕獲和轉移的精确控制中是有利的[85]。三能級系統(常稱為“qutrit”)在量子資訊中也很重要。與二能級方案相比,基于qutrits 的量子密鑰分發更能抵抗攻擊[86, 87],使用qutrits 的量子計算速度更快,錯誤率更低[88, 89]。人們已經提出了具有俘獲離子的qutrit 量子計算機[90]。此外,三能級系統用于建構量子熱機[91, 92]。識别雙模模型中可能涉及的量子相和量子相變有助于進一步了解這些光-物質互相作用模型并擴充其應用。熱力學極限下的兩模三能級互相作用模型備受關注。Hayn 等人通過廣義Holstein-Primakoff變換研究了量子相變,并揭示它表現出兩個超輻射量子相變,可以是一階的,也可以是二階的[93]。Cordero 等人發現,多色基态相圖可以通過變分分析劃分為單色區域[94]。Zhang 等人報告了兩模三能級量子Rabi 模型的基态相圖、标度函數和臨界指數的解析計算[8]。發現了量子Rabi 模型中的量子相變和臨界現象之後,研究者對Rabi 和Dicke 模型的标度行為的進一步研究表明這兩個模型屬于同一個普适類。這些進展為不在熱力學極限下的量子相變帶來了新的認識。

不管是凝聚态系統還是量子光學系統,其中的量子相變的研究使人們對自然界的突變現象有了深入的認識。随着理論和實驗的進展,人們一定會發現量子多體系統中關于相變的更為本質的規律。

參考文獻

[1] Fink J M, Dombi A, Vukics A, et al. Observation of the photon-blockade breakdown phase transition. Physical Review X, 2017, 7(1): 011012. DOI: 10.1103/PhysRevX.7.011012.

[2] Sun Z H, Cai J Q, Tang Q C, et al. Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke models. Annalen der Physik, 2020, 532(4): 1900270. DOI:10.1002/andp.201900270.

[3] Casteels W, Fazio R, Ciuti C. Critical dynamical properties of a first-order dissipative phase transition. Physical Review A, 2017, 95(1): 012128. DOI: 10.1103/PhysRevA.95.012128.

[4] Zhu H J, Xu K, Zhang G F, et al. Finite-component multicriticality at the superradiant quantum phase transition. Physical Review Letters, 2020, 125(5): 050402. DOI:10.1103/PhysRevLett.125.050402.

[5] Garbe L, Bina M, Keller A, et al. Critical quantum metrology with a finite-component quantum phase transition. Physical Review Letters, 2020, 124(12): 120504. DOI:10.1103/PhysRevLett.124.120504.

[6] Puebla R, Smirne A, Huelga S F, et al. Universal Anti-Kibble-Zurek scaling in fully connected systems. Physical Review Letters, 2020, 124(23): 230602. DOI: 10.1103/PhysRevLett.124.230602.

[7] Chen X Y, Zhang Y Y, Fu L, et al. Generalized coherent-squeezed-state expansion for the super-radiant phase transition. Physical Review A, 2020, 101(3): 033827. DOI:10.1103/PhysRevA.101.033827.

[8] Zhang Y, Mao B B, Xu D, et al. Quantum phase transitions and critical behaviors in the two-mode three-level quantum Rabi model. Journal of Physics A: Mathematical and Theoretical, 2020, 53(31): 315302. DOI: 10.1088/1751-8121/ab92be.

[9] Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005. DOI: 10.1103/RevModPhys.91.025005.

[10] Zhu C J, Ping L L, Yang Y P, et al. Squeezed light induced symmetry breaking superradiant phase transition. Physical Review Letters, 2020, 124(7): 073602. DOI: 10.1103/PhysRevLett.124.073602.

[11] Wang Y Z, He S, Duan L, et al. Quantum tricritical point emerging in the spin-boson model with two dissipative spins in staggered biases. Physical Review B, 2021, 103(20):205106. DOI: 10.1103/PhysRevB.103.205106.

[12] Leppäkangas J, Braumüller J, Hauck M, et al. Quantum simulation of the spin-boson model with a microwave circuit. Physical Review A, 2018, 97(5): 052321. DOI: 10.1103/PhysRevA.97.052321.

[13] Abdi M. Dynamical quantum phase transition in Bose-Einstein condensates. Physical Review B, 2019, 100(18): 184310. DOI: 10.1103/PhysRevB.100.184310.

[14] Garbe L, Egusquiza I L, Solano E, et al. Superradiant phase transition in the ultrastrongcoupling regime of the two-photon Dicke model. Physical Review A, 2017, 95(5):053854. DOI: 10.1103/PhysRevA.95.053854.

[15] Emary C, Brandes T. Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model. Physical Review Letters, 2003, 90(4): 044101. DOI: 10.1103/PhysRevLett.90.044101.

[16] Hwang M J, Puebla R, Plenio M B. Quantum phase transition and universal dynamics in the Rabi model. Physical Review Letters, 2015, 115(18): 180404. DOI: 10.1103/PhysRevLett.115.180404.

[17] Xie Q, Zhong H, Batchelor M T, et al. The quantum Rabi model: Solution and dynamics. Journal of Physics A: Mathematical and Theoretical, 2017, 50(11): 113001. DOI:10.1088/1751-8121/aa5a65.

[18] Cai M L, Liu Z D, Zhao W D, et al. Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion. Nature Communications, 2021, 12(1): 1-8. DOI:10.1038/s41467-021-21425-8.

[19] Rabi I I. On the process of space quantization. Physical Review, 1936, 49(4): 324-328. DOI: 10.1103/PhysRev.49.324.

[20] Rabi I I. Space quantization in a gyrating magnetic field. Physical Review, 1937, 51 (8): 652-654. DOI: 10.1103/PhysRev.51.652.

[21] Bloch F, Siegert A. Magnetic resonance for nonrotating fields. Physical Review, 1940, 57(6): 522-527. DOI: 10.1103/PhysRev.57.522.

[22] Tuorila J, Silveri M, Sillanpää M, et al. Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. Physical Review Letters, 2010, 105(25): 257003. DOI: 10.1103/PhysRevLett.105.257003.

[23] Jaynes E, Cummings F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 1963, 51(1): 89-109. DOI:10.1109/PROC.1963.1664.

[24] Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity. Physical Review Letters, 1992, 68(8): 1132-1135. DOI: 10.1103/PhysRevLett.68.1132.

[25] Brune M, Schmidt-Kaler F, Maali A, et al. Quantum Rabi oscillation: A direct test of field quantization in a cavity. Physical Review Letters, 1996, 76(11): 1800-1803. DOI:10.1103/PhysRevLett.76.1800.

[26] Niemczyk T, Deppe F, Huebl H, et al. Circuit quantum electrodynamics in the ultrastrong coupling regime. Nature Physics, 2010, 6(10): 772-776. DOI: 10.1038/nphys1730.

[27] Fink J M, Göppl M, Baur M, et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 2008, 454(7202): 315-318. DOI:10.1038/nature07112.

[28] Bourassa J, Gambetta J M, Abdumalikov A A, et al. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Physical Review A, 2009, 80(3): 032109. DOI:10.1103/PhysRevA.80.032109.

[29] Abdumalikov A A, Astafiev O, Nakamura Y, et al. Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator. Physical Review B, 2008, 78(18): 180502. DOI: 10.1103/PhysRevB.78.180502.

[30] Johansson J, Saito S, Meno T, et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Physical Review Letters, 2006, 96(12): 127006. DOI: 10.1103/PhysRevLett.96.127006.

[31] Forn-Díaz P, Lisenfeld J, Marcos D, et al. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Physical Review Letters, 2010, 105(23): 237001. DOI: 10.1103/PhysRevLett.105.237001.

[32] Fedorov A, Feofanov A K, Macha P, et al. Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Physical Review Letters, 2010, 105(6): 060503. DOI:10.1103/PhysRevLett.105.060503.

[33] Pirkkalainen J M, Cho S U, Li J, et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature, 2013, 494(7436): 211-215. DOI: 10.1038/nature11821.

[34] O’Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464(7289): 697-703. DOI: 10.1038/nature08967.

[35] LaHaye M D, Suh J, Echternach P M, et al. Nanomechanical measurements of a superconducting qubit. Nature, 2009, 459(7249): 960-964. DOI: 10.1038/nature08093.

[36] Crespi A, Longhi S, Osellame R. Photonic realization of the quantum Rabi model. Physical Review Letters, 2012, 108(16): 163601. DOI: 10.1103/PhysRevLett.108.163601.

[37] Yoshihara F, Fuse T, Ashhab S, et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nature Physics, 2017, 13(1): 44-47. DOI: 10.1038/nphys3906.

[38] Forn-Díaz P, García-Ripoll J J, Peropadre B, et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Physics, 2017, 13(1): 39-43. DOI: 10.1038/nphys3905.

[39] Feranchuk I D, Komarov L I, Ulyanenkov A P. Two-level system in a one-mode quantum field: Numerical solution on the basis of the operator method. Journal of Physics A: Mathematical and General, 1996, 29(14): 4035. DOI: 10.1088/0305-4470/29/14/026.

[40] Irish E K. Generalized rotating-wave approximation for arbitrarily large coupling. Physical Review Letters, 2007, 99(17): 173601. DOI: 10.1103/PhysRevLett.99.173601.

[41] Albert V V, Scholes G D, Brumer P. Symmetric rotating-wave approximation for the generalized single-mode spin-boson system. Physical Review A, 2011, 84(4): 042110. DOI: 10.1103/PhysRevA.84.042110.

[42] Yu L, Zhu S, Liang Q, et al. Analytical solutions for the Rabi model. Physical Review A, 2012, 86(1): 015803. DOI: 10.1103/PhysRevA.86.015803.

[43] Zhang Y Y, Chen Q H, Zhao Y. Generalized rotating-wave approximation to biased qubit-oscillator systems. Physical Review A, 2013, 87(3): 033827. DOI: 10.1103/PhysRevA.87.033827.

[44] Zhang Y Y, Chen Q H. Generalized rotating-wave approximation for the two-qubit quantum Rabi model. Physical Review A, 2015, 91(1): 013814. DOI: 10.1103/PhysRevA.91.013814.

[45] Zhang Y Y, Chen X Y, He S, et al. Analytical solutions and genuine multipartite entanglement of the three-qubit Dicke model. Physical Review A, 2016, 94(1): 012317. DOI:10.1103/PhysRevA.94.012317.

[46] Casanova J, Romero G, Lizuain I, et al. Deep strong coupling regime of the Jaynes-Cummings model. Physical Review Letters, 2010, 105(26): 263603. DOI: 10.1103/PhysRevLett.105.263603.

[47] Wolf F A, Kollar M, Braak D. Exact real-time dynamics of the quantum Rabi model. Physical Review A, 2012, 85(5): 053817. DOI: 10.1103/PhysRevA.85.053817.

[48] Wolf F A, Vallone F, Romero G, et al. Dynamical correlation functions and the quantum Rabi model. Physical Review A, 2013, 87(2): 023835. DOI: 10.1103/PhysRevA.87.023835.

[49] Zhang Y Y, Chen Q H, Zhu S Y. Vacuum Rabi splitting and dynamics of the Jaynes-Cummings model for arbitrary coupling. Chinese Physics Letters, 2013, 30(11):114203. DOI: 10.1088/0256-307X/30/11/114203.

[50] He S, Zhao Y, Chen Q H. Absence of collapse in quantum Rabi oscillations. Physical Review A, 2014, 90(5): 053848. DOI: 10.1103/PhysRevA.90.053848.

[51] Garziano L, Stassi R, Macrì V, et al. Multiphoton quantum Rabi oscillations in ultrastrong cavity QED. Physical Review A, 2015, 92(6): 063830. DOI: 10.1103/PhysRevA.92.063830.

[52] Garziano L, Macrì V, Stassi R, et al. One photon can simultaneously excite two or more atoms. Physical Review Letters, 2016, 117(4): 043601. DOI: 10.1103/PhysRevLett.117.043601.

[53] Braak D. Integrability of the Rabi model. Physical Review Letters, 2011, 107(10):

100401. DOI: 10.1103/PhysRevLett.107.100401.

[54] Braak D. A generalized G-function for the quantum Rabi model. Annalen der Physik, 2013, 525(3): L23-L28. DOI: 10.1002/andp.201200270.

[55] Chen Q H, Wang C, He S, et al. Exact solvability of the quantum Rabi model using Bogoliubov operators. Physical Review A, 2012, 86(2): 023822. DOI: 10.1103/PhysRevA.86.023822.

[56] Zhong H, Xie Q, Batchelor M T, et al. Analytical eigenstates for the quantum Rabi model. Journal of Physics A: Mathematical and Theoretical, 2013, 46(41): 415302. DOI:10.1088/1751-8113/46/41/415302.

[57] Maciejewski A J, Przybylska M, Stachowiak T. Full spectrum of the Rabi model.

Physics Letters A, 2014, 378(1): 16-20. DOI: 10.1016/j.physleta.2013.10.032.

[58] Judd B R. Exact solutions to a class of Jahn-Teller systems. Journal of Physics C: Solid State Physics, 1979, 12(9): 1685. DOI: 10.1088/0022-3719/12/9/010.

[59] Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 2004, 69(6): 062320. DOI: 10.1103/PhysRevA.69.062320.

[60] Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431(7005): 162-167. DOI: 10.1038/nature02851.

[61] Chen Z, Wang Y, Li T, et al. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Physical Review A, 2017, 96(1): 012325. DOI: 10.1103/PhysRevA.96.012325.

[62] Irish E K. Erratum: Generalized rotating-wave approximation for arbitrarily large coupling. Physical Review Letters, 2007, 99(25): 259901. DOI: 10.1103/PhysRevLett.99.259901.

[63] Xie Q T, Cui S, Cao J P, et al. Anisotropic Rabi model. Physical Review X, 2014, 4 (2): 021046. DOI: 10.1103/PhysRevX.4.021046.

[64] Ying Z J, Liu M, Luo H G, et al. Ground-state phase diagram of the quantum Rabi model. Physical Review A, 2015, 92(5): 053823. DOI: 10.1103/PhysRevA.92.053823.

[65] Gan C J, Zheng H. Dynamics of a two-level system coupled to a quantum oscillator: Transformed rotating-wave approximation. The European Physical Journal D, 2010, 59(3): 473-478. DOI: 10.1140/epjd/e2010-00182-8.

[66] Larson J. Absence of vacuum induced berry phases without the rotating wave approximation in cavity QED. Physical Review Letters, 2012, 108(3): 033601. DOI:

10.1103/PhysRevLett.108.033601.

[67] Ashhab S. Superradiance transition in a system with a single qubit and a single oscillator. Physical Review A, 2013, 87(1): 013826. DOI: 10.1103/PhysRevA.87.013826.

[68] De Liberato S. Light-matter decoupling in the deep strong coupling regime: The breakdown of the Purcell effect. Physical Review Letters, 2014, 112(1): 016401. DOI: 10.1103/PhysRevLett.112.016401.

[69] Liu M, Ying Z J, An J H, et al. Mean photon number dependent variational method to the Rabi model. New Journal of Physics, 2015, 17(4): 043001. DOI: 10.1088/1367-2630/17/4/043001.

[70] Cong L, Sun X M, Liu M, et al. Frequency-renormalized multipolaron expansion for the quantum Rabi model. Physical Review A, 2017, 95(6): 063803. DOI: 10.1103/PhysRevA.95.063803.

[71] Wang Y, You W L, Liu M, et al. Quantum criticality and state engineering in the simulated anisotropic quantum Rabi model. New Journal of Physics, 2018, 20(5): 053061. DOI:10.1088/1367-2630/aac5b5.

[72] Mao B B, Li L, Wang Y, et al. Variational generalized rotating-wave approximation in the two-qubit quantum Rabi model. Physical Review A, 2019, 99(3): 033834. DOI:10.1103/PhysRevA.99.033834.

[73] Mahmoodian S. Chiral light-matter interaction beyond the rotating-wave approximation. Physical Review Letters, 2019, 123(13): 133603. DOI: 10.1103/PhysRevLett.123.133603.

[74] Kockum A F, Miranowicz A, De Liberato S, et al. Publisher correction: Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(4): 295-295. DOI: 10.1038/s42254-019-0046-2.

[75] Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005. DOI: 10.1103/RevModPhys.91.025005.

[76] Xie W, Mao B B, Li G, et al. Squeezing based analytical variational method for the biased quantum Rabi model in the ultrastrong coupling regime. Journal of Physics A: Mathematical and Theoretical, 2020, 53(9): 095302. DOI: 10.1088/1751-8121/ab4b7a.

[77] Le Boité A. Theoretical methods for ultrastrong light–matter interactions. Advanced Quantum Technologies, 2020, 3(7): 1900140. DOI: 10.1002/qute.201900140.

[78] Frisk Kockum A, Miranowicz A, De Liberato S, et al. Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(1): 19-40. DOI: 10.1038/s42254-018-0006-2.

[79] Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics, 1959, 8(3): 325-342. DOI: 10.1016/0003-4916(59)90002-8.

[80] Raimond J M, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 2001, 73(3): 565-582. DOI: 10.1103/RevModPhys.73.565.

[81] Liu M, Chesi S, Ying Z J, et al. Universal scaling and critical exponents of the anisotropic quantum Rabi model. Physical Review Letters, 2017, 119(22): 220601. DOI: 10.1103/PhysRevLett.119.220601.

[82] Shen L T, Yang J W, Zhong Z R, et al. Quantum phase transition and quench dynamics in the two-mode Rabi model. Physical Review A, 2021, 104(6): 063703. DOI: 10.1103/PhysRevA.104.063703.

[83] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency. Physical Review Letters, 1991, 66(20): 2593-2596. DOI: 10.1103/PhysRevLett.66.2593.

[84] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency. Physical Review Letters, 2000, 84(22): 5094-5097. DOI: 10.1103/PhysRevLett.84.5094.

[85] Bergmann K, Theuer H, Shore B W. Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 1998, 70(3): 1003-1025. DOI:10.1103/RevModPhys.70.1003.

[86] Bruß D, Macchiavello C. Optimal eavesdropping in cryptography with three-dimensional quantum states. Physical Review Letters, 2002, 88(12): 127901. DOI: 10.1103/PhysRevLett.88.127901.

[87] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using -level systems. Physical Review Letters, 2002, 88(12): 127902. DOI: 10.1103/PhysRevLett. 88.127902.

[88] Zhou Z, Chu S I, Han S. Quantum computing with superconducting devices: A three-level SQUID qubit. Physical Review B, 2002, 66(5): 054527. DOI: 10.1103/PhysRevB.66.054527.

[89] Sjöqvist E, Tong D M, Andersson L M, et al. Non-adiabatic holonomic quantum computation. New Journal of Physics, 2012, 14(10): 103035. DOI: 10.1088/1367-2630/14/10/103035.

[90] Klimov A B, Guzmán R, Retamal J C, et al. Qutrit quantum computer with trapped ions. Physical Review A, 2003, 67(6): 062313. DOI: 10.1103/PhysRevA.67.062313.

[91] Geva E, Kosloff R. The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier. The Journal of Chemical Physics, 1996, 104(19):7681-7699. DOI: 10.1063/1.471453.

[92] Xu D, Wang C, Zhao Y, et al. Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective. New Journal of Physics, 2016, 18(2): 023003. DOI: 10.1088/1367-2630/18/2/023003.

[93] Hayn M, Emary C, Brandes T. Phase transitions and dark-state physics in two-color superradiance. Physical Review A, 2011, 84(5): 053856. DOI: 10.1103/PhysRevA.84.053856.

[94] Cordero S, Nahmad-Achar E, López-Peña R, et al. Polychromatic phase diagram for -level atoms interacting with ℓ modes of an electromagnetic field. Physical Review A, 2015, 92(5): 053843. DOI: 10.1103/PhysRevA.92.053843.

[95] Chen, Y., Liu, M. & Chen, X. Ground-state phase diagram, symmetries, excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model. Chinese Phys. B 32, 104213 (2023). DOI: 10.1088/1674-1056/acea66.

特 别 提 示

1. 進入『返樸』微信公衆号底部菜單“精品專欄“,可查閱不同主題系列科普文章。

2. 『返樸』提供按月檢索文章功能。關注公衆号,回複四位數組成的年份+月份,如“1903”,可擷取2019年3月的文章索引,以此類推。