天天看点

编程之美:平面最近点对

一.概念引入         最接近点对问题的提法是:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。严格地说,最接近点对可能多于1对。为了简单起见,这里只限于找其中的一对。         最简单的就是直接暴力,也可以分治,使用分治的话关键是如何合并,如果两边都是n/2个点比较的话,合并的时间是O(n^2),那么T(n)=2T(n/2)+O(n2),它的解为T(n)=O(n2),还是没什么优势,这就引导我们去优化合并算法。         为了找到一个有效的合并算法,可以先考虑一维情形,看下图:
编程之美:平面最近点对
        假设左右两边的最小距离是ans={ans1,ans2},很有可能最小距离分别存在于直线两端p3、q3,如果真是这样,则一定在p3∈(m-δ,m],q3∈(m,m+δ],且根据鸽巢原理,在这两个半闭区间只有一个点,否则就违背了ans的定义(两边存在更小距离),关键是选好划分点,最坏T(n)=T(n-1)+O(n),它的解是T(n)=O(n2),这种效率降低的现象可以通过适当选择分割点m,使左右两边有大致相等个数的点。         下面看二维情形:
编程之美:平面最近点对
        考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有dis(p,q)<ans(图中的sigma)。满足这个条件的P2中的点有多少个呢?容易看出这样的点一定落在一个δ×2δ的矩形R中,由δ的意义可知P2中任何2个S中的点的距离都不小于δ。由此可以推出矩形R中最多只有6个S中的点。事实上,我们可以将矩形R的长为2δ的边3等分,将它的长为δ的边2等分,由此导出6个(δ/2)×(2δ/3)的矩形,如下图
编程之美:平面最近点对
        若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个δ×2δ的小矩形中有2个以上S中的点。设u,v是这样2个点,它们位于同一小矩形中,则因此d(u,v)≤5δ/6<δ 。这与δ的意义相矛盾。也就是说矩形R中最多只有6个S中的点。图4(b)是矩形R中含有S中的6个点的极端情形。由于这种稀疏性质,对于P1中任一点p,P2中最多只有6个点与它构成最接近点对的候选者。因此,在分治法的合并步骤中,我们最多只需要检查6×n/2=3n对候选者,而不是n2/4对候选者。这是否就意味着我们可以在O(n)时间内完成分治法的合并步骤呢?现在还不能作出这个结论,因为我们只知道对于P1中每个S1中的点p最多只需要检查P2中的6个点,但是我们并不确切地知道要检查哪6个点。为了解决这个问题,我们可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于δ。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S的点按其y坐标排好序,则对P1中所有点p,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者,对P1中每一点最多只要检查P2中排好序的相继6个点。 二.算法Java实现         以hdu1007为例,果断AC……