天天看点

scikit-learn的线性回归模型

来自 http://blog.csdn.net/jasonding1354/article/details/46340729

如何使用pandas读入数据

如何使用seaborn进行数据的可视化

scikit-learn的线性回归模型和使用方法

线性回归模型的评估测度

特征选择的方法

作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果。

Pandas是一个用于数据探索、数据处理、数据分析的Python库

In [1]:

In [2]:

Out[2]:

TV

Radio

Newspaper

Sales

1

230.1

37.8

69.2

22.1

2

44.5

39.3

45.1

10.4

3

17.2

45.9

69.3

9.3

4

151.5

41.3

58.5

18.5

5

180.8

10.8

58.4

12.9

上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame)。

pandas的两个主要数据结构:Series和DataFrame:

Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。

DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。

In [3]:

Out[3]:

196

38.2

3.7

13.8

7.6

197

94.2

4.9

8.1

9.7

198

177.0

6.4

12.8

199

283.6

42.0

66.2

25.5

200

232.1

8.6

8.7

13.4

In [4]:

Out[4]:

特征:

TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)

Radio:在广播媒体上投资的广告费用

Newspaper:用于报纸媒体的广告费用

响应:

Sales:对应产品的销量

在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。

In [5]:

In [6]:

Out[6]:

<a href="http://www.17bigdata.com/wp-content/uploads/2015/06/20150603092124299.png"></a>

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind=’reg’,seaborn可以添加一条最佳拟合直线和95%的置信带。

In [7]:

Out[7]:

<a href="http://www.ppvke.com/Blog/wp-content/uploads/2015/07/b48b87ab603b9ee09a0909cbd02e26fd.png"></a>

优点:快速;没有调节参数;可轻易解释;可理解

缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。

线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中

y是响应

β0是截距

β1是x1的系数,以此类推

在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper

scikit-learn要求X是一个特征矩阵,y是一个NumPy向量

pandas构建在NumPy之上

因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构

In [8]:

Out[8]:

In [9]:

In [10]:

Out[10]:

In [11]:

In [12]:

In [14]:

In [15]:

Out[15]:

In [16]:

In [17]:

Out[17]:

y=2.88+0.0466∗TV+0.179∗Radio+0.00345∗Newspaper

如何解释各个特征对应的系数的意义?

对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位

更明确一点,加入其它两个媒体投入固定,在TV广告上没增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)

In [18]:

对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。

下面介绍三种常用的针对回归问题的评价测度

In [21]:

(1)平均绝对误差(Mean Absolute Error, MAE)

1n∑ni=1|yi−yi^|

(2)均方误差(Mean Squared Error, MSE)

1n∑ni=1(yi−yi^)2

(3)均方根误差(Root Mean Squared Error, RMSE)

1n∑ni=1(yi−yi^)2−−−−−−−−−−−−−√

In [24]:

In [26]:

在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比较弱,现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?

In [27]:

我们将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。