天天看点

Linux设备模型之tty驱动架构分析 (转载) (2012-03-08)

Linux设备模型之tty驱动架构分析 (转载) 转自:http://ericxiao.cublog.cn/

一:前言

TTY这个名称源于电传打字节的简称,在Linux系统表示各种终端。终端通常都跟硬件相对应。比如对应于输入设备的键盘鼠标,或输出设备的显示器和串口终端,也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,Linux系统是怎么将它们统一建模的呢? 这就是我们今天要讨论的问题。

二:tty驱动概貌

Tty架构如下所示:

如上图所示,用户空间主要是通过设备文件同tty_core交互。tty_core根据用空间操作的类型再选择跟line discipline和tty_driver交互。例如设置硬件的ioctl指令就直接交给tty_driver处理。Read和write操作就会交给 line discipline处理。

Line discipline是线路规程的意思。正如它的名字一样,它表示的是这条终端”线程”的输入与输出规范设置.主要用来进行输入/输出数据的预处理。处理之后。就会将数据交给tty_driver

Tty_driver就是终端对应的驱动了。它将字符转换成终端可以理解的字串,再将其传给终端设备。

值得注意的是,这个架构没有为tty_driver提供read操作。也就是说tty_core 和line discipline都没有办法从tty_driver里直接读终端信息。这是因为tty_driver对应的hardware并不一定是输入数据和输出 数据的共同负载者。例如控制终端,输出设备是显示器。输入设备是键盘。基于这样的原理。在line discipline中有一个输入缓存区。并提供了一个名叫receive_buf()的接口函数。对应的终端设备只要调用line discipine的receiver_buf函数,将数据写入到输入缓存区就可以了。

如果一个设备同时是输入设备又是输出设备。那在设备的中断处理中调用receive_buf()将数据写入即可.

三:tty驱动接口分析

具体的tty驱动设计可以参考LDD3。这里只对它的接口实现做一个分析.tty driver的所有操作都包含在tty_driver中。内核即供了一个名叫alloc_tty_driver()来分配这个tty_driver。当然 我们也可以在自己的驱动中将它定义成一个静态的结构。对tty_driver进行一些必要的初始化之后,调用tty_register_driver() 将其注册.

alloc_tty_driver()接口代码如下所示:

点击(此处)折叠或打开

struct tty_driver *alloc_tty_driver(int lines)

{

         struct tty_driver *driver;

         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);

         if (driver) {

                   driver->magic = TTY_DRIVER_MAGIC;

                   driver->num = lines;

                   /* later we'll move allocation of tables here */

         }

         return driver;

}

这个函数只有一个参数。这个参数的含义为line的个数。也即次设备号的个数。注意每个设备文件都会对应一个line.

在这个接口里为tty_driver分配内存,然后将driver->mage.driver->num初始化之后就返回了.

tty_register_driver()用来注册一个tty_driver。代码如下:

int tty_register_driver(struct tty_driver *driver)

         int error;

         int i;

         dev_t dev;

         void **p = NULL;

         //TTY_DRIVER_INSTALLED:已安装的

         if (driver->flags & TTY_DRIVER_INSTALLED)

                   return 0;

         //TTY_DRIVER_DEVPTS_MEM:使用devpts进行动态内存映射

         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {

                   p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);

                   if (!p)

                            return -ENOMEM;

         //注册字符设备号

         //如果没有指定driver->major

         if (!driver->major) {

                   error = alloc_chrdev_region(&dev, driver->minor_start,

                                                        driver->num, driver->name);

                   if (!error) {

                            driver->major = MAJOR(dev);

                            driver->minor_start = MINOR(dev);

                   }

         } else {

                   dev = MKDEV(driver->major, driver->minor_start);

                   error = register_chrdev_region(dev, driver->num, driver->name);

         if (error

                   kfree(p);

                  return error;

         if (p) {

               driver->ttys = (struct tty_struct **)p;

               driver->termios = (struct ktermios **)(p + driver->num);

               driver->termios_locked = (struct ktermios **)(p + driver->num * 2);

               driver->ttys = NULL;

               driver->termios = NULL;

               driver->termios_locked = NULL;

         //注册字符设备

         cdev_init(&driver->cdev, &tty_fops);

         driver->cdev.owner = driver->owner;

         error = cdev_add(&driver->cdev, dev, driver->num);

         if (error) {

                   unregister_chrdev_region(dev, driver->num);

                   driver->ttys = NULL;

                   driver->termios = driver->termios_locked = NULL;

                   return error;

         //指定默认的put_char

         if (!driver->put_char)

                   driver->put_char = tty_default_put_char;

         mutex_lock(&tty_mutex);

         list_add(&driver->tty_drivers, &tty_drivers);

         mutex_unlock(&tty_mutex);

         //如果没有指定TTY_DRIVER_DYNAMIC_DEV.即动态设备管理

         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {

                   for (i = 0; i num; i++)

                       tty_register_device(driver, i, NULL);

         proc_tty_register_driver(driver);

         return 0;

这个函数操作比较简单。就是为tty_driver创建字符设备。然后将字符设备的操作集指定为tty_fops.并且将tty_driver挂载到 tty_drivers链表中.其实这个链表的作用跟我们之前分析的input子系统中的input_dev[ ]数组类似。都是以设备号为关键字找到对应的driver.

特别的。如果没有定义TTY_DRIVER_DYNAMIC_DEV.还会在sysfs中创建一个类设备.这样主要是为了udev管理设备.

以流程图的方式将上述操作表示如下:

四:设备文件的操作

设备文件的操作是本节分析的重点。它的主要操作是将各项操作对应到ldsic或者是tty_driver.

4.1:打开tty设备的操作

从注册的过程可以看到,所有的操作都会对应到tty_fops中。Open操作对应的操作接口是tty_open()。代码如下:

static int tty_open(struct inode *inode, struct file *filp)

         struct tty_struct *tty;

         int noctty, retval;

         int index;

         dev_t device = inode->i_rdev;

         unsigned short saved_flags = filp->f_flags;

         nonseekable_open(inode, filp);

retry_open:

         //O_NOCTTY 如果路径名指向终端设备,不要把这个设备用作控制终端

         //noctty:需不需要更改当前进程的控制终端

         noctty = filp->f_flags & O_NOCTTY;

         index = -1;

         retval = 0;

         //设备号(5,0) 即/dev/tty.表示当前进程的控制终端

         if (device == MKDEV(TTYAUX_MAJOR, 0)) {

                   tty = get_current_tty();

                   //如果当前进程的控制终端不存在,退出

                   if (!tty) {

                            mutex_unlock(&tty_mutex);

                            return -ENXIO;

                   //取得当前进程的tty_driver

                   driver = tty->driver;

                   index = tty->index;

                   filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */

                   /* noctty = 1; */

                   goto got_driver;

#ifdef CONFIG_VT

         //设备号(4,0).即/dev/tty0:表示当前的控制台

         if (device == MKDEV(TTY_MAJOR, 0)) {

                   extern struct tty_driver *console_driver;

                   driver = console_driver;

                   //fg_console: 表示当前的控制台

                   index = fg_console;

                   noctty = 1;

#endif

         //设备号(5,1).即/dev/console.表示外接的控制台. 通过regesit_console()

         if (device == MKDEV(TTYAUX_MAJOR, 1)) {

                   driver = console_device(&index);

                   if (driver) {

                            /* Don't let /dev/console block */

                            filp->f_flags |= O_NONBLOCK;

                            noctty = 1;

                            goto got_driver;

                   mutex_unlock(&tty_mutex);

                   return -ENODEV;

         //以文件的设备号为关键字,到tty_drivers中搜索所注册的driver

         driver = get_tty_driver(device, &index);

         if (!driver) {

got_driver:

         //index表示它的次设备号

         retval = init_dev(driver, index, &tty);

         if (retval)

                   return retval;

         filp->private_data = tty;

         file_move(filp, &tty->tty_files);

         check_tty_count(tty, "tty_open");

         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&

             tty->driver->subtype == PTY_TYPE_MASTER)

         noctty = 1;

#ifdef TTY_DEBUG_HANGUP

         printk(KERN_DEBUG "opening %s...", tty->name);

         if (!retval) {

                   if (tty->driver->open)

                            retval = tty->driver->open(tty, filp);

                   else

                            retval = -ENODEV;

         filp->f_flags = saved_flags;

         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&

                                                        !capable(CAP_SYS_ADMIN))

                   retval = -EBUSY;

         if (retval) {

                   printk(KERN_DEBUG "error %d in opening %s...", retval,

                          tty->name);

                   release_dev(filp);

                   if (retval != -ERESTARTSYS)

                            return retval;

                   if (signal_pending(current))

                   schedule();

                   /*

                    * Need to reset f_op in case a hangup happened.

                    */

                   if (filp->f_op == &hung_up_tty_fops)

                            filp->f_op = &tty_fops;

                   goto retry_open;

         spin_lock_irq(&current->sighand->siglock);

         //设置当前进程的终端

         if (!noctty &&

             current->signal->leader &&

             !current->signal->tty &&

             tty->session == NULL)

                   __proc_set_tty(current, tty);

         spin_unlock_irq(&current->sighand->siglock);

         tty_audit_opening();

注意在这里有个容易忽略的操作:init_dev()。

Init_dev() -à initialize_tty_struct() à tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));

看一下tty_ldisc_assign(tty, tty_ldisc_get(N_TTY))的操作:

Tty_ldisc_get():

struct tty_ldisc *tty_ldisc_get(int disc)

         unsigned long flags;

         struct tty_ldisc *ld;

         if (disc = NR_LDISCS)

                   return NULL;

         spin_lock_irqsave(&tty_ldisc_lock, flags);

         ld = &tty_ldiscs[disc];

         /* Check the entry is defined */

         if (ld->flags & LDISC_FLAG_DEFINED) {

                   /* If the module is being unloaded we can't use it */

                   if (!try_module_get(ld->owner))

                            ld = NULL;

                   else /* lock it */

                            ld->refcount++;

         } else

                   ld = NULL;

         spin_unlock_irqrestore(&tty_ldisc_lock, flags);

         return ld;

这个函数的操作为到tty_ldiscs[ ]找到对应项.这个数组中的成员是调用tty_register_ldisc()将其设置进去的.

tty_ldisc_assign操作如下:

static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)

         tty->ldisc = *ld;

         tty->ldisc.refcount = 0;

即将取出来的idisc作为tty->ldisc字段.

在这段代码中涉及到了tty_driver,tty_struct, struct tty_ldisc.这三者之间的关系用下图表示如下:

在这里,为tty_struct的ldisc是默认指定为tty_ldiscs[N_TTY].该ldisc对应的是控制终端的线路规范。可以在用空间用 带TIOCSETD的ioctl调用进行更改.

将上述open用流程图的方式表示如下:

4.2:设备文件的write操作

设备文件的write操作对应tty_fops->write即tty_write().代码如下:

static ssize_t tty_write(struct file *file, const char __user *buf,

                                                        size_t count, loff_t *ppos)

         struct inode *inode = file->f_path.dentry->d_inode;

         ssize_t ret;

         tty = (struct tty_struct *)file->private_data;

         if (tty_paranoia_check(tty, inode, "tty_write"))

                   return -EIO;

         if (!tty || !tty->driver->write ||

                   (test_bit(TTY_IO_ERROR, &tty->flags)))

                            return -EIO;

         ld = tty_ldisc_ref_wait(tty);

         if (!ld->write)

                   ret = -EIO;

         else

                   ret = do_tty_write(ld->write, tty, file, buf, count);

         tty_ldisc_deref(ld);

         return ret;

在open的过程中,将tty_struct存放在file的私有区。在write中,从file的私有区中就可以取到要操作的tty_struct.

如果tty_driver中没有write.如果tty有错误都会有效性判断失败返回。如果一切正常,递增ldsic的引用计数。将用 do_tty_wirte()再行写操作。写完之后,再递减ldsic的引用计数.

Do_tty_write代码分段分析如下:

static inline ssize_t do_tty_write(

         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),

         struct tty_struct *tty,

         struct file *file,

         const char __user *buf,

         size_t count)

         ssize_t ret, written = 0;

         unsigned int chunk;

         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);

         if (ret

                   return ret;

         /*

          * We chunk up writes into a temporary buffer. This

          * simplifies low-level drivers immensely, since they

          * don't have locking issues and user mode accesses.

          *

          * But if TTY_NO_WRITE_SPLIT is set, we should use a

          * big chunk-size..

          * The default chunk-size is 2kB, because the NTTY

          * layer has problems with bigger chunks. It will

          * claim to be able to handle more characters than

          * it actually does.

          * FIXME: This can probably go away now except that 64K chunks

          * are too likely to fail unless switched to vmalloc...

          */

         chunk = 2048;

         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))

                   chunk = 65536;

         if (count

                   chunk = count;

         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */

         if (tty->write_cnt

                   unsigned char *buf;

                   if (chunk

                            chunk = 1024;

                   buf = kmalloc(chunk, GFP_KERNEL);

                   if (!buf) {

                            ret = -ENOMEM;

                            goto out;

                   kfree(tty->write_buf);

                   tty->write_cnt = chunk;

                   tty->write_buf = buf;

默认一次写数据的大小为2K.如果设置了TTY_NO_WRITE_SPLIT.则将一次写的数据量扩大为65536.

Tty->write_buf是写操作的临时缓存区。即将用户空的数据暂时存放到这里

Tty->write_cnt是临时缓存区的大小。

在这里,必须要根据一次写的数据量对这个临时缓存区做调整

         /* Do the write .. */

         for (;;) {

                   size_t size = count;

                   if (size > chunk)

                            size = chunk;

                   ret = -EFAULT;

                   if (copy_from_user(tty->write_buf, buf, size))

                            break;

                   lock_kernel();

                   ret = write(tty, file, tty->write_buf, size);

                   unlock_kernel();

                   if (ret

                   written += ret;

                   buf += ret;

                   count -= ret;

                   if (!count)

                   ret = -ERESTARTSYS;

                   cond_resched();

         if (written) {

                   struct inode *inode = file->f_path.dentry->d_inode;

                   inode->i_mtime = current_fs_time(inode->i_sb);

                   ret = written;

out:

         tty_write_unlock(tty);

后面的操作就比较简单了。先将用户空间的数据copy到临时缓存区,然后再调用ldisc->write()完成这次写操作.最后再更新设备结点的 时间戳.

Write操作的流程图如下示:

在这里,我们只看到将数据写放到了ldisc->write().没有看到与tty_driver相关的部份。实际上在ldisc中对写入的数据做 预处理过后,还是会调用tty_driver->write()将其写入硬件.

4.3:设备文件的read操作

static ssize_t tty_read(struct file *file, char __user *buf, size_t count,

                            loff_t *ppos)

         struct inode *inode;

         inode = file->f_path.dentry->d_inode;

         if (tty_paranoia_check(tty, inode, "tty_read"))

         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))

         /* We want to wait for the line discipline to sort out in this

            situation */

         lock_kernel();

         if (ld->read)

                   i = (ld->read)(tty, file, buf, count);

                   i = -EIO;

         unlock_kernel();

         if (i > 0)

                   inode->i_atime = current_fs_time(inode->i_sb);

         return i;

这个read操作就更简单。直接调用ldsic->read()完成工作

流程图如下:

五:小结

在tty设备文件的操作中。Open操作会进行一系统初始化。然后调用ldsic->open tty_driver->open。在write和read调用中只tty_core只会用到 ldisc->wirte/ldisc->read。除了上面分析的几个操作之外,还有一个ioctl操作,以及它封装的几个 termios。这些ioctl类的操作会直接和tty_driver相关联。

继续阅读