天天看点

剥开比原看代码10:比原是如何通过/create-key接口创建密钥的

作者:freewind

比原项目仓库:

Github地址:

https://github.com/Bytom/bytom Gitee地址: https://gitee.com/BytomBlockchain/bytom

在前一篇,我们探讨了从浏览器的dashboard中进行注册的时候,密钥、帐户的别名以及密码,是如何从前端传到了后端。在这一篇,我们就要看一下,当比原后台收到了创建密钥的请求之后,将会如何创建。

由于本文的问题比较具体,所以就不需要再细分,我们直接从代码开始。

还记得在前一篇中,对应创建密钥的web api的功能点的配置是什么样的吗?

API.buildHandler

方法中: api/api.go#L164-L244

func (a *API) buildHandler() {
    // ...
    if a.wallet != nil {
        // ...
        m.Handle("/create-key", jsonHandler(a.pseudohsmCreateKey))
        // ...
      

可见,其路径为

/create-key

,而相应的handler是

a.pseudohsmCreateKey

(外面套着的

jsonHandler

在之前已经讨论过,这里不提):

api/hsm.go#L23-L32
func (a *API) pseudohsmCreateKey(ctx context.Context, in struct {
    Alias string `json:"alias"`
    Password string `json:"password"`
}) Response {
    xpub, err := a.wallet.Hsm.XCreate(in.Alias, in.Password)
    if err != nil {
        return NewErrorResponse(err)
    }
    return NewSuccessResponse(xpub)
}
      

它主要是调用了

a.wallet.Hsm.XCreate

,让我们跟进去:

blockchain/pseudohsm/pseudohsm.go#L50-L66
// XCreate produces a new random xprv and stores it in the db.
func (h *HSM) XCreate(alias string, auth string) (*XPub, error) {
    // ...
    // 1.
    normalizedAlias := strings.ToLower(strings.TrimSpace(alias))
    // 2.
    if ok := h.cache.hasAlias(normalizedAlias); ok {
        return nil, ErrDuplicateKeyAlias
    }

    // 3.
    xpub, _, err := h.createChainKDKey(auth, normalizedAlias, false)
    if err != nil {
        return nil, err
    }
    // 4.
    h.cache.add(*xpub)
    return xpub, err
}
      

其中出现了

HSM

这个词,它是指

Hardware-Security-Module

,原来比原还预留了跟硬件相关的模块(暂不讨论)。

上面的代码分成了4部分,分别是:

  1. 首先对传进来的

    alias

    参数进行标准化操作,即去两边空白,并且转换成小写
  2. 检查

    cache

    中有没有,有的话就直接返回并报个相应的错,不会重复生成,因为私钥和别名是一一对应的。在前端可以根据这个错误提醒用户检查或者换一个新的别名。
  3. 调用

    createChainKDKey

    生成相应的密钥,并拿到返回的公钥

    xpub

  4. 把公钥放入cache中。看起来公钥和别名并不是同一个东西,那前面为什么可以查询alias呢?

所以我们进入

h.cache.hasAlias

看看:

blockchain/pseudohsm/keycache.go#L76-L84
func (kc *keyCache) hasAlias(alias string) bool {
    xpubs := kc.keys()
    for _, xpub := range xpubs {
        if xpub.Alias == alias {
            return true
        }
    }
    return false
}
      

通过

xpub.Alias

我们可以了解到,原来别名跟公钥是绑定的,

alias

可以看作是公钥的一个属性(当然也属于相应的私钥)。所以前面把公钥放进cache,之后就可以查询别名了。

那么第3步中的

createChainKDKey

又是如何生成密钥的呢?

blockchain/pseudohsm/pseudohsm.go#L68-L86
func (h *HSM) createChainKDKey(auth string, alias string, get bool) (*XPub, bool, error) {
    // 1.
    xprv, xpub, err := chainkd.NewXKeys(nil)
    if err != nil {
        return nil, false, err
    }
    // 2.
    id := uuid.NewRandom()
    key := &XKey{
        ID: id,
        KeyType: "bytom_kd",
        XPub: xpub,
        XPrv: xprv,
        Alias: alias,
    }
    // 3.
    file := h.keyStore.JoinPath(keyFileName(key.ID.String()))
    if err := h.keyStore.StoreKey(file, key, auth); err != nil {
        return nil, false, errors.Wrap(err, "storing keys")
    }
    // 4.
    return &XPub{XPub: xpub, Alias: alias, File: file}, true, nil
}
      

这块代码内容比较清晰,我们可以把它分成4步,分别是:

  1. chainkd.NewXKeys

    生成密钥。其中

    chainkd

    对应的是比原代码库中的另一个包

    "crypto/ed25519/chainkd"

    ,从名称上来看,使用的是

    ed25519

    算法。如果对前面文章“如何连上一个比原节点”还有印象的话,会记得比原在有新节点连上的时候,就会使用该算法生成一对密钥,用于当次连接进行加密通信。不过需要注意的是,虽然两者都是

    ed25519

    算法,但是上次使用的代码却是来自第三方库

    "github.com/tendermint/go-crypto"

    的。它跟这次的算法在细节上究竟有哪些不同,目前还不清楚,留待以后合适的机会研究。然后是传入

    chainkd.NewXKeys(nil)

    的参数

    nil

    ,对应的是“随机数生成器”。如果传的是

    nil

    NewXKeys

    就会在内部使用默认的随机数生成器生成随机数并生成密钥。关于密钥算法相关的内容,在本文中并不探讨。
  2. 给当前密钥生成一个唯一的id,在后面用于生成文件名,保存在硬盘上。id使用的是uuid,生成的是一个形如

    62bc9340-f6a7-4d16-86f0-4be61920a06e

    这样的全球唯一的随机数
  3. 把密钥以文件形式保存在硬盘上。这块内容比较多,下面详细讲。
  4. 把公钥相关信息组合在一起,供调用者使用。

我们再详细讲一下第3步,把密钥保存成文件。首先是生成文件名,

keyFileName

函数对应的代码如下:

blockchain/pseudohsm/key.go#L96-L101
// keyFileName implements the naming convention for keyfiles:
// UTC--<created_at UTC ISO8601>-<address hex>
func keyFileName(keyAlias string) string {
    ts := time.Now().UTC()
    return fmt.Sprintf("UTC--%s--%s", toISO8601(ts), keyAlias)
}
      

注意这里的参数

keyAlias

实际上应该是

keyID

,就是前面生成的uuid。写成

alias

有点误导,已经提交PR

#922

。最后生成的文件名,形如:

UTC--2018-05-07T06-20-46.270917000Z--62bc9340-f6a7-4d16-86f0-4be61920a06e

生成文件名之后,会通过

h.keyStore.JoinPath

把它放在合适的目录下。通常来说,这个目录是本机数据目录下的

keystore

,如果你是OSX系统,它应该在你的

~/Library/Bytom/keystore

,如果是别的,你可以通过下面的代码来确定

DefaultDataDir()

关于上面的保存密钥文件的目录,到底是怎么确定的,在代码中其实是有点绕的。不过如果你对这感兴趣的话,我相信你应该能自行找到,这里就不列出来了。如果找不到的话,可以试试以下关键字:

pseudohsm.New(config.KeysDir())

os.ExpandEnv(config.DefaultDataDir())

DefaultDataDir()

DefaultBaseConfig()

在第3步的最后,会调用

keyStore.StoreKey

方法,把它保存成文件。该方法代码如下:

blockchain/pseudohsm/keystore_passphrase.go#L67-L73
func (ks keyStorePassphrase) StoreKey(filename string, key *XKey, auth string) error {
    keyjson, err := EncryptKey(key, auth, ks.scryptN, ks.scryptP)
    if err != nil {
        return err
    }
    return writeKeyFile(filename, keyjson)
}
      

EncryptKey

里做了很多事情,把传进来的密钥及其它信息利用起来生成了JSON格式的信息,然后通过

writeKeyFile

把它保存硬盘上。所以在你的

keystore

目录下,会看到属于你的密钥文件。它们很重要,千万别误删了。

a.wallet.Hsm.XCreate

看完了,让我们回到

a.pseudohsmCreateKey

方法的最后一部分。可以看到,当成功生成key之后,会返回一个

NewSuccessResponse(xpub)

,把与公钥相关的信息返回给前端。它会被

jsonHandler

自动转换成JSON格式,通过http返回过去。

在这次的问题中,我们主要研究的是比原在通过web api接口

/create-key

接收到请求后,在内部做了哪些事,以及把密钥文件放在了哪里。其中涉及到密钥的算法(如

ed25519

)会在以后的文章中,进行详细的讨论。

继续阅读