天天看点

探索Android中的Parcel机制(上)

一.先从Serialize说起

         我们都知道JAVA中的Serialize机制,译成串行化、序列化……,其作用是能将数据对象存入字节流当中,在需要时重新生成对象。主要应用是利用外部存储设备保存对象状态,以及通过网络传输对象等。

二.Android中的新的序列化机制

         在Android系统中,定位为针对内存受限的设备,因此对性能要求更高,另外系统中采用了新的IPC(进程间通信)机制,必然要求使用性能更出色的对象传输方式。在这样的环境下,Parcel被设计出来,其定位就是轻量级的高效的对象序列化和反序列化机制。

三.Parcel类的背后

         在Framework中有parcel类,源码路径是:

Frameworks/base/core/java/android/os/Parcel.java

典型的源码片断如下:

/**

* Write an integer value into the parcel at the current dataPosition(),

* growing dataCapacity() if needed.

*/

public final native void writeInt(int val);

/**

* Write a long integer value into the parcel at the current dataPosition(),

* growing dataCapacity() if needed.

*/

public final native void writeLong(long val);

         从中我们看到,从这个源程序文件中我们看不到真正的功能是如何实现的,必须透过JNI往下走了。于是,Frameworks/base/core/jni/android_util_Binder.cpp中找到了线索

 static void android_os_Parcel_writeInt(JNIEnv* env, jobject clazz, jint val)

{

Parcel* parcel = parcelForJavaObject(env, clazz);

if (parcel != NULL) {

const status_t err = parcel->writeInt32(val);

if (err != NO_ERROR) {

jniThrowException(env, "java/lang/OutOfMemoryError", NULL);

}

}

}

static void android_os_Parcel_writeLong(JNIEnv* env, jobject clazz, jlong val)

{

Parcel* parcel = parcelForJavaObject(env, clazz);

if (parcel != NULL) {

const status_t err = parcel->writeInt64(val);

if (err != NO_ERROR) {

jniThrowException(env, "java/lang/OutOfMemoryError", NULL);

}

}

}

         从这里我们可以得到的信息是函数的实现依赖于Parcel指针,因此还需要找到Parcel的类定义,注意,这里的类已经是用C++语言实现的了。

         找到Frameworks/base/include/binder/parcel.h和Frameworks/base/libs/binder/parcel.cpp。终于找到了最终的实现代码了。

         有兴趣的朋友可以自己读一下,不难理解,这里把基本的思路总结一下:

1.       整个读写全是在内存中进行,主要是通过malloc()、realloc()、memcpy()等内存操作进行,所以效率比JAVA序列化中使用外部存储器会高很多;

2.       读写时是4字节对齐的,可以看到#define PAD_SIZE(s) (((s)+3)&~3)这句宏定义就是在做这件事情;

3.       如果预分配的空间不够时newSize = ((mDataSize+len)*3)/2;会一次多分配50%;

4.       对于普通数据,使用的是mData内存地址,对于IBinder类型的数据以及FileDescriptor使用的是mObjects内存地址。后者是通过flatten_binder()和unflatten_binder()实现的,目的是反序列化时读出的对象就是原对象而不用重新new一个新对象。

好了,这就是Parcel背后的动作,全是在一块内存里进行读写操作,就不啰嗦了,把parcel的代码贴在这供没有源码的朋友参考吧。接下来我会用一个小DEMO演示一下Parcel类在应用程序中的使用,详见《探索Android中的Parcel机制(下)》。

 /*

* Copyright (C) 2005 The Android Open Source Project

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

#ifndef ANDROID_PARCEL_H

#define ANDROID_PARCEL_H

#include <cutils/native_handle.h>

#include <utils/Errors.h>

#include <utils/RefBase.h>

#include <utils/String16.h>

#include <utils/Vector.h>

// ---------------------------------------------------------------------------

namespace android {

class IBinder;

class ProcessState;

class String8;

class TextOutput;

class Flattenable;

struct flat_binder_object; // defined in support_p/binder_module.h

class Parcel

{

public:

Parcel();

~Parcel();

const uint8_t* data() const;

size_t dataSize() const;

size_t dataAvail() const;

size_t dataPosition() const;

size_t dataCapacity() const;

status_t setDataSize(size_t size);

void setDataPosition(size_t pos) const;

status_t setDataCapacity(size_t size);

status_t setData(const uint8_t* buffer, size_t len);

status_t appendFrom(Parcel *parcel, size_t start, size_t len);

bool hasFileDescriptors() const;

status_t writeInterfaceToken(const String16& interface);

bool enforceInterface(const String16& interface) const;

bool checkInterface(IBinder*) const;

void freeData();

const size_t* objects() const;

size_t objectsCount() const;

status_t errorCheck() const;

void setError(status_t err);

status_t write(const void* data, size_t len);

void* writeInplace(size_t len);

status_t writeUnpadded(const void* data, size_t len);

status_t writeInt32(int32_t val);

status_t writeInt64(int64_t val);

status_t writeFloat(float val);

status_t writeDouble(double val);

status_t writeIntPtr(intptr_t val);

status_t writeCString(const char* str);

status_t writeString8(const String8& str);

status_t writeString16(const String16& str);

status_t writeString16(const char16_t* str, size_t len);

status_t writeStrongBinder(const sp<IBinder>& val);

status_t writeWeakBinder(const wp<IBinder>& val);

status_t write(const Flattenable& val);

// Place a native_handle into the parcel (the native_handle's file-

// descriptors are dup'ed, so it is safe to delete the native_handle

// when this function returns).

// Doesn't take ownership of the native_handle.

status_t writeNativeHandle(const native_handle* handle);

// Place a file descriptor into the parcel. The given fd must remain

// valid for the lifetime of the parcel.

status_t writeFileDescriptor(int fd);

// Place a file descriptor into the parcel. A dup of the fd is made, which

// will be closed once the parcel is destroyed.

status_t writeDupFileDescriptor(int fd);

status_t writeObject(const flat_binder_object& val, bool nullMetaData);

void remove(size_t start, size_t amt);

status_t read(void* outData, size_t len) const;

const void* readInplace(size_t len) const;

int32_t readInt32() const;

status_t readInt32(int32_t *pArg) const;

int64_t readInt64() const;

status_t readInt64(int64_t *pArg) const;

float readFloat() const;

status_t readFloat(float *pArg) const;

double readDouble() const;

status_t readDouble(double *pArg) const;

intptr_t readIntPtr() const;

status_t readIntPtr(intptr_t *pArg) const;

const char* readCString() const;

String8 readString8() const;

String16 readString16() const;

const char16_t* readString16Inplace(size_t* outLen) const;

sp<IBinder> readStrongBinder() const;

wp<IBinder> readWeakBinder() const;

status_t read(Flattenable& val) const;

// Retrieve native_handle from the parcel. This returns a copy of the

// parcel's native_handle (the caller takes ownership). The caller

// must free the native_handle with native_handle_close() and

// native_handle_delete().

native_handle* readNativeHandle() const;

// Retrieve a file descriptor from the parcel. This returns the raw fd

// in the parcel, which you do not own -- use dup() to get your own copy.

int readFileDescriptor() const;

const flat_binder_object* readObject(bool nullMetaData) const;

// Explicitly close all file descriptors in the parcel.

void closeFileDescriptors();

typedef void (*release_func)(Parcel* parcel,

const uint8_t* data, size_t dataSize,

const size_t* objects, size_t objectsSize,

void* cookie);

const uint8_t* ipcData() const;

size_t ipcDataSize() const;

const size_t* ipcObjects() const;

size_t ipcObjectsCount() const;

void ipcSetDataReference(const uint8_t* data, size_t dataSize,

const size_t* objects, size_t objectsCount,

release_func relFunc, void* relCookie);

void print(TextOutput& to, uint32_t flags = 0) const;

private:

Parcel(const Parcel& o);

Parcel& operator=(const Parcel& o);

status_t finishWrite(size_t len);

void releaseObjects();

void acquireObjects();

status_t growData(size_t len);

status_t restartWrite(size_t desired);

status_t continueWrite(size_t desired);

void freeDataNoInit();

void initState();

void scanForFds() const;

template<class T>

status_t readAligned(T *pArg) const;

template<class T> T readAligned() const;

template<class T>

status_t writeAligned(T val);

status_t mError;

uint8_t* mData;

size_t mDataSize;

size_t mDataCapacity;

mutable size_t mDataPos;

size_t* mObjects;

size_t mObjectsSize;

size_t mObjectsCapacity;

mutable size_t mNextObjectHint;

mutable bool mFdsKnown;

mutable bool mHasFds;

release_func mOwner;

void* mOwnerCookie;

};

// ---------------------------------------------------------------------------

inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel)

{

parcel.print(to);

return to;

}

// ---------------------------------------------------------------------------

// Generic acquire and release of objects.

void acquire_object(const sp<ProcessState>& proc,

const flat_binder_object& obj, const void* who);

void release_object(const sp<ProcessState>& proc,

const flat_binder_object& obj, const void* who);

void flatten_binder(const sp<ProcessState>& proc,

const sp<IBinder>& binder, flat_binder_object* out);

void flatten_binder(const sp<ProcessState>& proc,

const wp<IBinder>& binder, flat_binder_object* out);

status_t unflatten_binder(const sp<ProcessState>& proc,

const flat_binder_object& flat, sp<IBinder>* out);

status_t unflatten_binder(const sp<ProcessState>& proc,

const flat_binder_object& flat, wp<IBinder>* out);

}; // namespace android

// ---------------------------------------------------------------------------

#endif // ANDROID_PARCEL_H

/*

* Copyright (C) 2005 The Android Open Source Project

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

#define LOG_TAG "Parcel"

//#define LOG_NDEBUG 0

#include <binder/Parcel.h>

#include <binder/Binder.h>

#include <binder/BpBinder.h>

#include <utils/Debug.h>

#include <binder/ProcessState.h>

#include <utils/Log.h>

#include <utils/String8.h>

#include <utils/String16.h>

#include <utils/TextOutput.h>

#include <utils/misc.h>

#include <utils/Flattenable.h>

#include <private/binder/binder_module.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#ifndef INT32_MAX

#define INT32_MAX ((int32_t)(2147483647))

#endif

#define LOG_REFS(...)

//#define LOG_REFS(...) LOG(LOG_DEBUG, "Parcel", __VA_ARGS__)

// ---------------------------------------------------------------------------

#define PAD_SIZE(s) (((s)+3)&~3)

// XXX This can be made public if we want to provide

// support for typed data.

struct small_flat_data

{

uint32_t type;

uint32_t data;

};

namespace android {

void acquire_object(const sp<ProcessState>& proc,

const flat_binder_object& obj, const void* who)

{

switch (obj.type) {

case BINDER_TYPE_BINDER:

if (obj.binder) {

LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);

static_cast<IBinder*>(obj.cookie)->incStrong(who);

}

return;

case BINDER_TYPE_WEAK_BINDER:

if (obj.binder)

static_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);

return;

case BINDER_TYPE_HANDLE: {

const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);

if (b != NULL) {

LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());

b->incStrong(who);

}

return;

}

case BINDER_TYPE_WEAK_HANDLE: {

const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);

if (b != NULL) b.get_refs()->incWeak(who);

return;

}

case BINDER_TYPE_FD: {

// intentionally blank -- nothing to do to acquire this, but we do

// recognize it as a legitimate object type.

return;

}

}

LOGD("Invalid object type 0x%08lx", obj.type);

}

void release_object(const sp<ProcessState>& proc,

const flat_binder_object& obj, const void* who)

{

switch (obj.type) {

case BINDER_TYPE_BINDER:

if (obj.binder) {

LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);

static_cast<IBinder*>(obj.cookie)->decStrong(who);

}

return;

case BINDER_TYPE_WEAK_BINDER:

if (obj.binder)

static_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);

return;

case BINDER_TYPE_HANDLE: {

const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);

if (b != NULL) {

LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());

b->decStrong(who);

}

return;

}

case BINDER_TYPE_WEAK_HANDLE: {

const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);

if (b != NULL) b.get_refs()->decWeak(who);

return;

}

case BINDER_TYPE_FD: {

if (obj.cookie != (void*)0) close(obj.handle);

return;

}

}

LOGE("Invalid object type 0x%08lx", obj.type);

}

inline static status_t finish_flatten_binder(

const sp<IBinder>& binder, const flat_binder_object& flat, Parcel* out)

{

return out->writeObject(flat, false);

}

status_t flatten_binder(const sp<ProcessState>& proc,

const sp<IBinder>& binder, Parcel* out)

{

flat_binder_object obj;

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

if (binder != NULL) {

IBinder *local = binder->localBinder();

if (!local) {

BpBinder *proxy = binder->remoteBinder();

if (proxy == NULL) {

LOGE("null proxy");

}

const int32_t handle = proxy ? proxy->handle() : 0;

obj.type = BINDER_TYPE_HANDLE;

obj.handle = handle;

obj.cookie = NULL;

} else {

obj.type = BINDER_TYPE_BINDER;

obj.binder = local->getWeakRefs();

obj.cookie = local;

}

} else {

obj.type = BINDER_TYPE_BINDER;

obj.binder = NULL;

obj.cookie = NULL;

}

return finish_flatten_binder(binder, obj, out);

}

status_t flatten_binder(const sp<ProcessState>& proc,

const wp<IBinder>& binder, Parcel* out)

{

flat_binder_object obj;

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

if (binder != NULL) {

sp<IBinder> real = binder.promote();

if (real != NULL) {

IBinder *local = real->localBinder();

if (!local) {

BpBinder *proxy = real->remoteBinder();

if (proxy == NULL) {

LOGE("null proxy");

}

const int32_t handle = proxy ? proxy->handle() : 0;

obj.type = BINDER_TYPE_WEAK_HANDLE;

obj.handle = handle;

obj.cookie = NULL;

} else {

obj.type = BINDER_TYPE_WEAK_BINDER;

obj.binder = binder.get_refs();

obj.cookie = binder.unsafe_get();

}

return finish_flatten_binder(real, obj, out);

}

// XXX How to deal? In order to flatten the given binder,

// we need to probe it for information, which requires a primary

// reference... but we don't have one.

//

// The OpenBinder implementation uses a dynamic_cast<> here,

// but we can't do that with the different reference counting

// implementation we are using.

LOGE("Unable to unflatten Binder weak reference!");

obj.type = BINDER_TYPE_BINDER;

obj.binder = NULL;

obj.cookie = NULL;

return finish_flatten_binder(NULL, obj, out);

} else {

obj.type = BINDER_TYPE_BINDER;

obj.binder = NULL;

obj.cookie = NULL;

return finish_flatten_binder(NULL, obj, out);

}

}

inline static status_t finish_unflatten_binder(

BpBinder* proxy, const flat_binder_object& flat, const Parcel& in)

{

return NO_ERROR;

}

status_t unflatten_binder(const sp<ProcessState>& proc,

const Parcel& in, sp<IBinder>* out)

{

const flat_binder_object* flat = in.readObject(false);

if (flat) {

switch (flat->type) {

case BINDER_TYPE_BINDER:

*out = static_cast<IBinder*>(flat->cookie);

return finish_unflatten_binder(NULL, *flat, in);

case BINDER_TYPE_HANDLE:

*out = proc->getStrongProxyForHandle(flat->handle);

return finish_unflatten_binder(

static_cast<BpBinder*>(out->get()), *flat, in);

}

}

return BAD_TYPE;

}

status_t unflatten_binder(const sp<ProcessState>& proc,

const Parcel& in, wp<IBinder>* out)

{

const flat_binder_object* flat = in.readObject(false);

if (flat) {

switch (flat->type) {

case BINDER_TYPE_BINDER:

*out = static_cast<IBinder*>(flat->cookie);

return finish_unflatten_binder(NULL, *flat, in);

case BINDER_TYPE_WEAK_BINDER:

if (flat->binder != NULL) {

out->set_object_and_refs(

static_cast<IBinder*>(flat->cookie),

static_cast<RefBase::weakref_type*>(flat->binder));

} else {

*out = NULL;

}

return finish_unflatten_binder(NULL, *flat, in);

case BINDER_TYPE_HANDLE:

case BINDER_TYPE_WEAK_HANDLE:

*out = proc->getWeakProxyForHandle(flat->handle);

return finish_unflatten_binder(

static_cast<BpBinder*>(out->unsafe_get()), *flat, in);

}

}

return BAD_TYPE;

}

// ---------------------------------------------------------------------------

Parcel::Parcel()

{

initState();

}

Parcel::~Parcel()

{

freeDataNoInit();

}

const uint8_t* Parcel::data() const

{

return mData;

}

size_t Parcel::dataSize() const

{

return (mDataSize > mDataPos ? mDataSize : mDataPos);

}

size_t Parcel::dataAvail() const

{

// TODO: decide what to do about the possibility that this can

// report an available-data size that exceeds a Java int's max

// positive value, causing havoc. Fortunately this will only

// happen if someone constructs a Parcel containing more than two

// gigabytes of data, which on typical phone hardware is simply

// not possible.

return dataSize() - dataPosition();

}

size_t Parcel::dataPosition() const

{

return mDataPos;

}

size_t Parcel::dataCapacity() const

{

return mDataCapacity;

}

status_t Parcel::setDataSize(size_t size)

{

status_t err;

err = continueWrite(size);

if (err == NO_ERROR) {

mDataSize = size;

LOGV("setDataSize Setting data size of %p to %d/n", this, mDataSize);

}

return err;

}

void Parcel::setDataPosition(size_t pos) const

{

mDataPos = pos;

mNextObjectHint = 0;

}

status_t Parcel::setDataCapacity(size_t size)

{

if (size > mDataSize) return continueWrite(size);

return NO_ERROR;

}

status_t Parcel::setData(const uint8_t* buffer, size_t len)

{

status_t err = restartWrite(len);

if (err == NO_ERROR) {

memcpy(const_cast<uint8_t*>(data()), buffer, len);

mDataSize = len;

mFdsKnown = false;

}

return err;

}

status_t Parcel::appendFrom(Parcel *parcel, size_t offset, size_t len)

{

const sp<ProcessState> proc(ProcessState::self());

status_t err;

uint8_t *data = parcel->mData;

size_t *objects = parcel->mObjects;

size_t size = parcel->mObjectsSize;

int startPos = mDataPos;

int firstIndex = -1, lastIndex = -2;

if (len == 0) {

return NO_ERROR;

}

// range checks against the source parcel size

if ((offset > parcel->mDataSize)

|| (len > parcel->mDataSize)

|| (offset + len > parcel->mDataSize)) {

return BAD_VALUE;

}

// Count objects in range

for (int i = 0; i < (int) size; i++) {

size_t off = objects[i];

if ((off >= offset) && (off < offset + len)) {

if (firstIndex == -1) {

firstIndex = i;

}

lastIndex = i;

}

}

int numObjects = lastIndex - firstIndex + 1;

// grow data

err = growData(len);

if (err != NO_ERROR) {

return err;

}

// append data

memcpy(mData + mDataPos, data + offset, len);

mDataPos += len;

mDataSize += len;

if (numObjects > 0) {

// grow objects

if (mObjectsCapacity < mObjectsSize + numObjects) {

int newSize = ((mObjectsSize + numObjects)*3)/2;

size_t *objects =

(size_t*)realloc(mObjects, newSize*sizeof(size_t));

if (objects == (size_t*)0) {

return NO_MEMORY;

}

mObjects = objects;

mObjectsCapacity = newSize;

}

// append and acquire objects

int idx = mObjectsSize;

for (int i = firstIndex; i <= lastIndex; i++) {

size_t off = objects[i] - offset + startPos;

mObjects[idx++] = off;

mObjectsSize++;

flat_binder_object* flat

= reinterpret_cast<flat_binder_object*>(mData + off);

acquire_object(proc, *flat, this);

if (flat->type == BINDER_TYPE_FD) {

// If this is a file descriptor, we need to dup it so the

// new Parcel now owns its own fd, and can declare that we

// officially know we have fds.

flat->handle = dup(flat->handle);

flat->cookie = (void*)1;

mHasFds = mFdsKnown = true;

}

}

}

return NO_ERROR;

}

bool Parcel::hasFileDescriptors() const

{

if (!mFdsKnown) {

scanForFds();

}

return mHasFds;

}

status_t Parcel::writeInterfaceToken(const String16& interface)

{

// currently the interface identification token is just its name as a string

return writeString16(interface);

}

bool Parcel::checkInterface(IBinder* binder) const

{

return enforceInterface(binder->getInterfaceDescriptor());

}

bool Parcel::enforceInterface(const String16& interface) const

{

const String16 str(readString16());

if (str == interface) {

return true;

} else {

LOGW("**** enforceInterface() expected '%s' but read '%s'/n",

String8(interface).string(), String8(str).string());

return false;

}

}

const size_t* Parcel::objects() const

{

return mObjects;

}

size_t Parcel::objectsCount() const

{

return mObjectsSize;

}

status_t Parcel::errorCheck() const

{

return mError;

}

void Parcel::setError(status_t err)

{

mError = err;

}

status_t Parcel::finishWrite(size_t len)

{

//printf("Finish write of %d/n", len);

mDataPos += len;

LOGV("finishWrite Setting data pos of %p to %d/n", this, mDataPos);

if (mDataPos > mDataSize) {

mDataSize = mDataPos;

LOGV("finishWrite Setting data size of %p to %d/n", this, mDataSize);

}

//printf("New pos=%d, size=%d/n", mDataPos, mDataSize);

return NO_ERROR;

}

status_t Parcel::writeUnpadded(const void* data, size_t len)

{

size_t end = mDataPos + len;

if (end < mDataPos) {

// integer overflow

return BAD_VALUE;

}

if (end <= mDataCapacity) {

restart_write:

memcpy(mData+mDataPos, data, len);

return finishWrite(len);

}

status_t err = growData(len);

if (err == NO_ERROR) goto restart_write;

return err;

}

status_t Parcel::write(const void* data, size_t len)

{

void* const d = writeInplace(len);

if (d) {

memcpy(d, data, len);

return NO_ERROR;

}

return mError;

}

void* Parcel::writeInplace(size_t len)

{

const size_t padded = PAD_SIZE(len);

// sanity check for integer overflow

if (mDataPos+padded < mDataPos) {

return NULL;

}

if ((mDataPos+padded) <= mDataCapacity) {

restart_write:

//printf("Writing %ld bytes, padded to %ld/n", len, padded);

uint8_t* const data = mData+mDataPos;

// Need to pad at end?

if (padded != len) {

#if BYTE_ORDER == BIG_ENDIAN

static const uint32_t mask[4] = {

0x00000000, 0xffffff00, 0xffff0000, 0xff000000

};

#endif

#if BYTE_ORDER == LITTLE_ENDIAN

static const uint32_t mask[4] = {

0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff

};

#endif

//printf("Applying pad mask: %p to %p/n", (void*)mask[padded-len],

// *reinterpret_cast<void**>(data+padded-4));

*reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];

}

finishWrite(padded);

return data;

}

status_t err = growData(padded);

if (err == NO_ERROR) goto restart_write;

return NULL;

}

status_t Parcel::writeInt32(int32_t val)

{

return writeAligned(val);

}

status_t Parcel::writeInt64(int64_t val)

{

return writeAligned(val);

}

status_t Parcel::writeFloat(float val)

{

return writeAligned(val);

}

status_t Parcel::writeDouble(double val)

{

return writeAligned(val);

}

status_t Parcel::writeIntPtr(intptr_t val)

{

return writeAligned(val);

}

status_t Parcel::writeCString(const char* str)

{

return write(str, strlen(str)+1);

}

status_t Parcel::writeString8(const String8& str)

{

status_t err = writeInt32(str.bytes());

if (err == NO_ERROR) {

err = write(str.string(), str.bytes()+1);

}

return err;

}

status_t Parcel::writeString16(const String16& str)

{

return writeString16(str.string(), str.size());

}

status_t Parcel::writeString16(const char16_t* str, size_t len)

{

if (str == NULL) return writeInt32(-1);

status_t err = writeInt32(len);

if (err == NO_ERROR) {

len *= sizeof(char16_t);

uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));

if (data) {

memcpy(data, str, len);

*reinterpret_cast<char16_t*>(data+len) = 0;

return NO_ERROR;

}

err = mError;

}

return err;

}

status_t Parcel::writeStrongBinder(const sp<IBinder>& val)

{

return flatten_binder(ProcessState::self(), val, this);

}

status_t Parcel::writeWeakBinder(const wp<IBinder>& val)

{

return flatten_binder(ProcessState::self(), val, this);

}

status_t Parcel::writeNativeHandle(const native_handle* handle)

{

if (!handle || handle->version != sizeof(native_handle))

return BAD_TYPE;

status_t err;

err = writeInt32(handle->numFds);

if (err != NO_ERROR) return err;

err = writeInt32(handle->numInts);

if (err != NO_ERROR) return err;

for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)

err = writeDupFileDescriptor(handle->data[i]);

if (err != NO_ERROR) {

LOGD("write native handle, write dup fd failed");

return err;

}

err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);

return err;

}

status_t Parcel::writeFileDescriptor(int fd)

{

flat_binder_object obj;

obj.type = BINDER_TYPE_FD;

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

obj.handle = fd;

obj.cookie = (void*)0;

return writeObject(obj, true);

}

status_t Parcel::writeDupFileDescriptor(int fd)

{

flat_binder_object obj;

obj.type = BINDER_TYPE_FD;

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

obj.handle = dup(fd);

obj.cookie = (void*)1;

return writeObject(obj, true);

}

status_t Parcel::write(const Flattenable& val)

{

status_t err;

// size if needed

size_t len = val.getFlattenedSize();

size_t fd_count = val.getFdCount();

err = this->writeInt32(len);

if (err) return err;

err = this->writeInt32(fd_count);

if (err) return err;

// payload

void* buf = this->writeInplace(PAD_SIZE(len));

if (buf == NULL)

return BAD_VALUE;

int* fds = NULL;

if (fd_count) {

fds = new int[fd_count];

}

err = val.flatten(buf, len, fds, fd_count);

for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {

err = this->writeDupFileDescriptor( fds[i] );

}

if (fd_count) {

delete [] fds;

}

return err;

}

status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)

{

const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;

const bool enoughObjects = mObjectsSize < mObjectsCapacity;

if (enoughData && enoughObjects) {

restart_write:

*reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;

// Need to write meta-data?

if (nullMetaData || val.binder != NULL) {

mObjects[mObjectsSize] = mDataPos;

acquire_object(ProcessState::self(), val, this);

mObjectsSize++;

}

// remember if it's a file descriptor

if (val.type == BINDER_TYPE_FD) {

mHasFds = mFdsKnown = true;

}

return finishWrite(sizeof(flat_binder_object));

}

if (!enoughData) {

const status_t err = growData(sizeof(val));

if (err != NO_ERROR) return err;

}

if (!enoughObjects) {

size_t newSize = ((mObjectsSize+2)*3)/2;

size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));

if (objects == NULL) return NO_MEMORY;

mObjects = objects;

mObjectsCapacity = newSize;

}

goto restart_write;

}

void Parcel::remove(size_t start, size_t amt)

{

LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");

}

status_t Parcel::read(void* outData, size_t len) const

{

if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) {

memcpy(outData, mData+mDataPos, len);

mDataPos += PAD_SIZE(len);

LOGV("read Setting data pos of %p to %d/n", this, mDataPos);

return NO_ERROR;

}

return NOT_ENOUGH_DATA;

}

const void* Parcel::readInplace(size_t len) const

{

if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) {

const void* data = mData+mDataPos;

mDataPos += PAD_SIZE(len);

LOGV("readInplace Setting data pos of %p to %d/n", this, mDataPos);

return data;

}

return NULL;

}

template<class T>

status_t Parcel::readAligned(T *pArg) const {

COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));

if ((mDataPos+sizeof(T)) <= mDataSize) {

const void* data = mData+mDataPos;

mDataPos += sizeof(T);

*pArg = *reinterpret_cast<const T*>(data);

return NO_ERROR;

} else {

return NOT_ENOUGH_DATA;

}

}

template<class T>

T Parcel::readAligned() const {

T result;

if (readAligned(&result) != NO_ERROR) {

result = 0;

}

return result;

}

template<class T>

status_t Parcel::writeAligned(T val) {

COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));

if ((mDataPos+sizeof(val)) <= mDataCapacity) {

restart_write:

*reinterpret_cast<T*>(mData+mDataPos) = val;

return finishWrite(sizeof(val));

}

status_t err = growData(sizeof(val));

if (err == NO_ERROR) goto restart_write;

return err;

}

status_t Parcel::readInt32(int32_t *pArg) const

{

return readAligned(pArg);

}

int32_t Parcel::readInt32() const

{

return readAligned<int32_t>();

}

status_t Parcel::readInt64(int64_t *pArg) const

{

return readAligned(pArg);

}

int64_t Parcel::readInt64() const

{

return readAligned<int64_t>();

}

status_t Parcel::readFloat(float *pArg) const

{

return readAligned(pArg);

}

float Parcel::readFloat() const

{

return readAligned<float>();

}

status_t Parcel::readDouble(double *pArg) const

{

return readAligned(pArg);

}

double Parcel::readDouble() const

{

return readAligned<double>();

}

status_t Parcel::readIntPtr(intptr_t *pArg) const

{

return readAligned(pArg);

}

intptr_t Parcel::readIntPtr() const

{

return readAligned<intptr_t>();

}

const char* Parcel::readCString() const

{

const size_t avail = mDataSize-mDataPos;

if (avail > 0) {

const char* str = reinterpret_cast<const char*>(mData+mDataPos);

// is the string's trailing NUL within the parcel's valid bounds?

const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));

if (eos) {

const size_t len = eos - str;

mDataPos += PAD_SIZE(len+1);

LOGV("readCString Setting data pos of %p to %d/n", this, mDataPos);

return str;

}

}

return NULL;

}

String8 Parcel::readString8() const

{

int32_t size = readInt32();

// watch for potential int overflow adding 1 for trailing NUL

if (size > 0 && size < INT32_MAX) {

const char* str = (const char*)readInplace(size+1);

if (str) return String8(str, size);

}

return String8();

}

String16 Parcel::readString16() const

{

size_t len;

const char16_t* str = readString16Inplace(&len);

if (str) return String16(str, len);

LOGE("Reading a NULL string not supported here.");

return String16();

}

const char16_t* Parcel::readString16Inplace(size_t* outLen) const

{

int32_t size = readInt32();

// watch for potential int overflow from size+1

if (size >= 0 && size < INT32_MAX) {

*outLen = size;

const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));

if (str != NULL) {

return str;

}

}

*outLen = 0;

return NULL;

}

sp<IBinder> Parcel::readStrongBinder() const

{

sp<IBinder> val;

unflatten_binder(ProcessState::self(), *this, &val);

return val;

}

wp<IBinder> Parcel::readWeakBinder() const

{

wp<IBinder> val;

unflatten_binder(ProcessState::self(), *this, &val);

return val;

}

native_handle* Parcel::readNativeHandle() const

{

int numFds, numInts;

status_t err;

err = readInt32(&numFds);

if (err != NO_ERROR) return 0;

err = readInt32(&numInts);

if (err != NO_ERROR) return 0;

native_handle* h = native_handle_create(numFds, numInts);

for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {

h->data[i] = dup(readFileDescriptor());

if (h->data[i] < 0) err = BAD_VALUE;

}

err = read(h->data + numFds, sizeof(int)*numInts);

if (err != NO_ERROR) {

native_handle_close(h);

native_handle_delete(h);

h = 0;

}

return h;

}

int Parcel::readFileDescriptor() const

{

const flat_binder_object* flat = readObject(true);

if (flat) {

switch (flat->type) {

case BINDER_TYPE_FD:

//LOGI("Returning file descriptor %ld from parcel %p/n", flat->handle, this);

return flat->handle;

}

}

return BAD_TYPE;

}

status_t Parcel::read(Flattenable& val) const

{

// size

const size_t len = this->readInt32();

const size_t fd_count = this->readInt32();

// payload

void const* buf = this->readInplace(PAD_SIZE(len));

if (buf == NULL)

return BAD_VALUE;

int* fds = NULL;

if (fd_count) {

fds = new int[fd_count];

}

status_t err = NO_ERROR;

for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {

fds[i] = dup(this->readFileDescriptor());

if (fds[i] < 0) err = BAD_VALUE;

}

if (err == NO_ERROR) {

err = val.unflatten(buf, len, fds, fd_count);

}

if (fd_count) {

delete [] fds;

}

return err;

}

const flat_binder_object* Parcel::readObject(bool nullMetaData) const

{

const size_t DPOS = mDataPos;

if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {

const flat_binder_object* obj

= reinterpret_cast<const flat_binder_object*>(mData+DPOS);

mDataPos = DPOS + sizeof(flat_binder_object);

if (!nullMetaData && (obj->cookie == NULL && obj->binder == NULL)) {

// When transferring a NULL object, we don't write it into

// the object list, so we don't want to check for it when

// reading.

LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);

return obj;

}

// Ensure that this object is valid...

size_t* const OBJS = mObjects;

const size_t N = mObjectsSize;

size_t opos = mNextObjectHint;

if (N > 0) {

LOGV("Parcel %p looking for obj at %d, hint=%d/n",

this, DPOS, opos);

// Start at the current hint position, looking for an object at

// the current data position.

if (opos < N) {

while (opos < (N-1) && OBJS[opos] < DPOS) {

opos++;

}

} else {

opos = N-1;

}

if (OBJS[opos] == DPOS) {

// Found it!

LOGV("Parcel found obj %d at index %d with forward search",

this, DPOS, opos);

mNextObjectHint = opos+1;

LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);

return obj;

}

// Look backwards for it...

while (opos > 0 && OBJS[opos] > DPOS) {

opos--;

}

if (OBJS[opos] == DPOS) {

// Found it!

LOGV("Parcel found obj %d at index %d with backward search",

this, DPOS, opos);

mNextObjectHint = opos+1;

LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos);

return obj;

}

}

LOGW("Attempt to read object from Parcel %p at offset %d that is not in the object list",

this, DPOS);

}

return NULL;

}

void Parcel::closeFileDescriptors()

{

size_t i = mObjectsSize;

if (i > 0) {

//LOGI("Closing file descriptors for %d objects...", mObjectsSize);

}

while (i > 0) {

i--;

const flat_binder_object* flat

= reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);

if (flat->type == BINDER_TYPE_FD) {

//LOGI("Closing fd: %ld/n", flat->handle);

close(flat->handle);

}

}

}

const uint8_t* Parcel::ipcData() const

{

return mData;

}

size_t Parcel::ipcDataSize() const

{

return (mDataSize > mDataPos ? mDataSize : mDataPos);

}

const size_t* Parcel::ipcObjects() const

{

return mObjects;

}

size_t Parcel::ipcObjectsCount() const

{

return mObjectsSize;

}

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,

const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)

{

freeDataNoInit();

mError = NO_ERROR;

mData = const_cast<uint8_t*>(data);

mDataSize = mDataCapacity = dataSize;

//LOGI("setDataReference Setting data size of %p to %lu (pid=%d)/n", this, mDataSize, getpid());

mDataPos = 0;

LOGV("setDataReference Setting data pos of %p to %d/n", this, mDataPos);

mObjects = const_cast<size_t*>(objects);

mObjectsSize = mObjectsCapacity = objectsCount;

mNextObjectHint = 0;

mOwner = relFunc;

mOwnerCookie = relCookie;

scanForFds();

}

void Parcel::print(TextOutput& to, uint32_t flags) const

{

to << "Parcel(";

if (errorCheck() != NO_ERROR) {

const status_t err = errorCheck();

to << "Error: " << (void*)err << " /"" << strerror(-err) << "/"";

} else if (dataSize() > 0) {

const uint8_t* DATA = data();

to << indent << HexDump(DATA, dataSize()) << dedent;

const size_t* OBJS = objects();

const size_t N = objectsCount();

for (size_t i=0; i<N; i++) {

const flat_binder_object* flat

= reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);

to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "

<< TypeCode(flat->type & 0x7f7f7f00)

<< " = " << flat->binder;

}

} else {

to << "NULL";

}

to << ")";

}

void Parcel::releaseObjects()

{

const sp<ProcessState> proc(ProcessState::self());

size_t i = mObjectsSize;

uint8_t* const data = mData;

size_t* const objects = mObjects;

while (i > 0) {

i--;

const flat_binder_object* flat

= reinterpret_cast<flat_binder_object*>(data+objects[i]);

release_object(proc, *flat, this);

}

}

void Parcel::acquireObjects()

{

const sp<ProcessState> proc(ProcessState::self());

size_t i = mObjectsSize;

uint8_t* const data = mData;

size_t* const objects = mObjects;

while (i > 0) {

i--;

const flat_binder_object* flat

= reinterpret_cast<flat_binder_object*>(data+objects[i]);

acquire_object(proc, *flat, this);

}

}

void Parcel::freeData()

{

freeDataNoInit();

initState();

}

void Parcel::freeDataNoInit()

{

if (mOwner) {

//LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid());

mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);

} else {

releaseObjects();

if (mData) free(mData);

if (mObjects) free(mObjects);

}

}

status_t Parcel::growData(size_t len)

{

size_t newSize = ((mDataSize+len)*3)/2;

return (newSize <= mDataSize)

? (status_t) NO_MEMORY

: continueWrite(newSize);

}

status_t Parcel::restartWrite(size_t desired)

{

if (mOwner) {

freeData();

return continueWrite(desired);

}

uint8_t* data = (uint8_t*)realloc(mData, desired);

if (!data && desired > mDataCapacity) {

mError = NO_MEMORY;

return NO_MEMORY;

}

releaseObjects();

if (data) {

mData = data;

mDataCapacity = desired;

}

mDataSize = mDataPos = 0;

LOGV("restartWrite Setting data size of %p to %d/n", this, mDataSize);

LOGV("restartWrite Setting data pos of %p to %d/n", this, mDataPos);

free(mObjects);

mObjects = NULL;

mObjectsSize = mObjectsCapacity = 0;

mNextObjectHint = 0;

mHasFds = false;

mFdsKnown = true;

return NO_ERROR;

}

status_t Parcel::continueWrite(size_t desired)

{

// If shrinking, first adjust for any objects that appear

// after the new data size.

size_t objectsSize = mObjectsSize;

if (desired < mDataSize) {

if (desired == 0) {

objectsSize = 0;

} else {

while (objectsSize > 0) {

if (mObjects[objectsSize-1] < desired)

break;

objectsSize--;

}

}

}

if (mOwner) {

// If the size is going to zero, just release the owner's data.

if (desired == 0) {

freeData();

return NO_ERROR;

}

// If there is a different owner, we need to take

// posession.

uint8_t* data = (uint8_t*)malloc(desired);

if (!data) {

mError = NO_MEMORY;

return NO_MEMORY;

}

size_t* objects = NULL;

if (objectsSize) {

objects = (size_t*)malloc(objectsSize*sizeof(size_t));

if (!objects) {

mError = NO_MEMORY;

return NO_MEMORY;

}

// Little hack to only acquire references on objects

// we will be keeping.

size_t oldObjectsSize = mObjectsSize;

mObjectsSize = objectsSize;

acquireObjects();

mObjectsSize = oldObjectsSize;

}

if (mData) {

memcpy(data, mData, mDataSize < desired ? mDataSize : desired);

}

if (objects && mObjects) {

memcpy(objects, mObjects, objectsSize*sizeof(size_t));

}

//LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid());

mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);

mOwner = NULL;

mData = data;

mObjects = objects;

mDataSize = (mDataSize < desired) ? mDataSize : desired;

LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);

mDataCapacity = desired;

mObjectsSize = mObjectsCapacity = objectsSize;

mNextObjectHint = 0;

} else if (mData) {

if (objectsSize < mObjectsSize) {

// Need to release refs on any objects we are dropping.

const sp<ProcessState> proc(ProcessState::self());

for (size_t i=objectsSize; i<mObjectsSize; i++) {

const flat_binder_object* flat

= reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);

if (flat->type == BINDER_TYPE_FD) {

// will need to rescan because we may have lopped off the only FDs

mFdsKnown = false;

}

release_object(proc, *flat, this);

}

size_t* objects =

(size_t*)realloc(mObjects, objectsSize*sizeof(size_t));

if (objects) {

mObjects = objects;

}

mObjectsSize = objectsSize;

mNextObjectHint = 0;

}

// We own the data, so we can just do a realloc().

if (desired > mDataCapacity) {

uint8_t* data = (uint8_t*)realloc(mData, desired);

if (data) {

mData = data;

mDataCapacity = desired;

} else if (desired > mDataCapacity) {

mError = NO_MEMORY;

return NO_MEMORY;

}

} else {

mDataSize = desired;

LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);

if (mDataPos > desired) {

mDataPos = desired;

LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos);

}

}

} else {

// This is the first data. Easy!

uint8_t* data = (uint8_t*)malloc(desired);

if (!data) {

mError = NO_MEMORY;

return NO_MEMORY;

}

if(!(mDataCapacity == 0 && mObjects == NULL

&& mObjectsCapacity == 0)) {

LOGE("continueWrite: %d/%p/%d/%d", mDataCapacity, mObjects, mObjectsCapacity, desired);

}

mData = data;

mDataSize = mDataPos = 0;

LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize);

LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos);

mDataCapacity = desired;

}

return NO_ERROR;

}

void Parcel::initState()

{

mError = NO_ERROR;

mData = 0;

mDataSize = 0;

mDataCapacity = 0;

mDataPos = 0;

LOGV("initState Setting data size of %p to %d/n", this, mDataSize);

LOGV("initState Setting data pos of %p to %d/n", this, mDataPos);

mObjects = NULL;

mObjectsSize = 0;

mObjectsCapacity = 0;

mNextObjectHint = 0;

mHasFds = false;

mFdsKnown = true;

mOwner = NULL;

}

void Parcel::scanForFds() const

{

bool hasFds = false;

for (size_t i=0; i<mObjectsSize; i++) {

const flat_binder_object* flat

= reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);

if (flat->type == BINDER_TYPE_FD) {

hasFds = true;

break;

}

}

mHasFds = hasFds;

mFdsKnown = true;

}

}; // namespace android

         本文的源码使用的是Android 2.1版本。

——欢迎转载,请注明出处 http://blog.csdn.net/caowenbin ——