天天看点

PySpark-prophet预测1.导入库和初始化设置2.数据预处理3.建模4.读取hive数据,调用spark进行prophet模型预测

大家好,又见面了,我是你们的朋友全栈君。

简介

Prophet是facebook开源的时间序列预测工具,使用时间序列分解与机器学习拟合的方法进行建模预测,关于prophet模型优点本文不再累述,网络上的文章也比较多了,各种可视化,参数的解释与demo演示,但是真正用到工业上大规模的可供学习的中文材料并不多。

本文打算使用PySpark进行多序列预测建模,会给出一个比较详细的脚本,供交流学习,重点在于使用hive数据/分布式,数据预处理,以及pandas_udf对多条序列进行循环执行。

tips:背景说明,在十万级别的sku序列上使用prophet预测每个序列未来七天的销售。

文章目录

  • 1.导入库和初始化设置
  • 2.数据预处理
  • 3.建模
  • 4.读取hive数据,调用spark进行prophet模型预测

1.导入库和初始化设置

Pandas Udf 构建在 Apache Arrow 之上,因此具有低开销,高性能的特点,udf对每条记录都会操作一次,数据在 JVM 和 Python 中传输,pandas_udf就是使用 Java 和 Scala 中定义 UDF,然后在 python 中调用。

#导入库
import datetime
from dateutil.relativedelta import relativedelta
from fbprophet import Prophet
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from pyspark.sql import SparkSession
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import *

#初始化
spark = SparkSession. \
    Builder(). \
    config("spark.sql.execution.arrow.enabled", "true"). \
    enableHiveSupport(). \
    getOrCreate()           

复制

其中初始化config:开启spark df与pandas df 相互转化的性能优化配置.

2.数据预处理

def sale_ds(df):
    df['ds'] = pd.to_datetime(df['ds'])
    df = df[['store_sku', 'ds', 'y']]
    # 控制长度,周期不用太长,关注最近的几个完整周期即可
    start_day = (
            df['ds'].max() -
            relativedelta(
                days=63)).strftime('%Y-%m-%d')
    df = df[df['ds'] >= start_day][['store_sku', 'ds', 'y']]
    # 筛选条件:1 序列长度大于等于14,且过去最少有七天的销售记录;
    # 条件1,保障模型有两个完整的周期数据;
    # 条件2,避免出现0,0,0,0,0,0,1,0,1这样数据稀疏的数据出现
    sale_set = df.groupby(
        ['store_sku']).filter(
        lambda x: len(x) >= 14 and np.sum(
            x['y']) > 7)
    return sale_set


def replace_fill(data):
    """ 先尝试使用上周的数据填补,再针对极端的数据进行cap,保障序列的完整和平滑性 :param data:单个序列 :param name: 序列名称,store_sku :return: 修复后的一条序列 """
    data['ds'] = pd.to_datetime(data['ds'], format='%Y-%m-%d')
    data['y'] = data['y'].astype(float)
    data.loc[data['y'] <= 0, 'y'] = np.NaN
    data.loc[data['y'].isnull(), 'y'] = data['y'].shift(7).values[0]
    data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-7).values[0]
    data.loc[data['y'].isnull(), 'y'] = data['y'].shift(-14).values[0]
    data.loc[data['y'].isnull(), 'y'] = data['y'].shift(14).values[0]
    data.loc[data['y'].isnull(), 'y'] = data['y'].interpolate(methon='nearest', order=3)
    low = data[data['y'] > 0]['y'].quantile(0.10)
    high = data[data['y'] > 0]['y'].quantile(0.90)
    data.loc[data['y'] < low, 'y'] = np.NaN
    data.loc[data['y'] > high, 'y'] = np.NaN
    data['y'] = data['y'].fillna(data['y'].mean())
    data['y'] = np.log1p(data['y'])
    return data           

复制

以上为数据预处理,具体内容见注释.

放入模型中的时间和y值名称必须是ds和y,首先控制数据的周期长度,如果预测天这种粒度的任务,则使用最近的4-6周即可。

因为是放入了长度不一的多个序列,为了让预测更加可靠,对序列的长度有一定的限定,比如,序列长度至少有14天,还要一个需要注意的问题是,如果出现0,0,0,0,0,0,1,0,1这样数据稀疏的数据的时候,prophet会报错,报错内容大致为,std太低,反推回去就是放入的数据类似于常量,模型无法拟合。

至于缺失值的填充,prophet可以设置y为nan,模型在拟合过程中也会自动填充一个预测值,因为我们预测的为sku销量,是具有星期这种周期性的,所以如果出现某一天的缺失,我们倾向于使用最近几周同期数据进行填充,没有优先使用均值或众数进行填充,是因为,均值和众数会掩盖序列的周期性,破坏整个序列的规律,为了进一步对数据进行平滑,对于异常值还进行了分位数盖帽,因为时序数据往往是偏态分布,所以我们对原始值做了取对数处理。

以上的数据预处理比较简单,其中多数可以使用hive进行操作,会更加高效,这里放出来的目的是演示一种思路以及python函数和最后的pandas_udf交互。

3.建模

def prophet_train(data):
    model = Prophet(
        daily_seasonality=False,
        yearly_seasonality=False,
        holidays=holiday_df,
        holidays_prior_scale=10)
    model.add_seasonality(
        name='weekly',
        period=7,
        fourier_order=3,
        prior_scale=0.10)
    model.fit(data)
    future = model.make_future_dataframe(periods=7, freq='d')
    forecast = model.predict(future)
    forecast['pro_pred'] = np.expm1(forecast['yhat'])
    forecast_df=forecast[['store_sku','ds','pro_pred']]
    # 对预测值修正
    forecast_df.loc[forecast_df['pro_pred'] < 0, 'pro_pred'] = 0
    low = (1 + 0.1) * data['y'].min()
    hight = min((1 + 0.05) * data['y'].max(), 10000)
    forecast_df.loc[forecast_df['pro_pred'] < low, 'pro_pred'] = low
    forecast_df.loc[forecast_df['pro_pred'] > hight, 'pro_pred'] = hight
    return forecast_df           

复制

以上参数设置详见https://zhuanlan.zhihu.com/p/52330017

函数内部的holiday_df是假日数据,数据格式需要按照文档要求进行定义,改函数部分也会和整个代码一起放在github,如果序列中最近呈现出较大的下滑或者增长,那么预测值很容易得到负数或者非常大,这个时候我们依然需要对预测值进行修正,而非完全交给模型,当然你也可以在放入数据中设置上下限。

data['cap'] = 1000  #上限
data['floor'] = 6  #下限           

复制

该函数把前面的数据预处理函数和模型训练函数放在一个函数中,类似于主函数,目的是使用统一的输入和输出。

def prophet_main(data):
    true_time = pd.datetime.now().strftime('%Y-%m-%d')
    data.dropna(inplace=True)
    data['ds'] = pd.to_datetime(data['ds'])
    data = data[data['ds'] < true_time]
    data['ds'] = data['ds'].astype(str)
    data['ds'] = pd.to_datetime(data['ds'])
    # 异常值替换
    data = replace_fill(data)
    pro_back = prophet_train(data)
    return pro_back           

复制

4.读取hive数据,调用spark进行prophet模型预测

schema = StructType([
    StructField("store_sku", StringType()),
    StructField("ds", StringType()),
    StructField("pro_pred", DoubleType())
])

@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def run_model(data):
    data['store_sku']=data['store_sku'].astype(str)
    df = prophet_main(data)
    uuid = data['store_sku'].iloc[0]
    df['store_sku']=unid
    df['ds']=df['ds'].astype(str)
    df['pro_pred']=df['pro_pred'].astype(float)
    cols=['store_sku','ds','pro_pred']
    return df[cols]           

复制

假设我们希望输出的结果为三列,分别是store_sku,ds,pro_pred,则定义它们的数据类型,定义的数据类型和顺序要和放入的数据类型一致,然后通过

@pandas_udf

进行装饰,PandasUDFType有两种类型一种是

Scalar

(标量映射),另一种是

Grouped Map

(分组映射).我们显然是要使用分组映射,通过store_sku作为id进行分组,从而实现

split-apply-combine

以上是纯python内容,下面展示通过hive数据库读取和运行python并把结果写入hive中。

data = spark.sql(
    """ select concat(store_code,'_',goods_code) as store_sku,qty_fix as y,ds from scmtemp.redsku_store_sku_sale_fix_d""")
data.createOrReplaceTempView('data')
sale_predict = data.groupby(['store_sku']).apply(run_model)
sale_predict.createOrReplaceTempView('test_read_data')
# 保存到数据库
spark.sql(f"drop table if exists scmtemp.store_sku_sale_prophet")
spark.sql(f"create table scmtemp.store_sku_sale_prophet as select * from store_sku_predict_29 ")
print('完成预测')           

复制

当然也可以不用pandas_udf的形式进行

,在旧版spark中使用sc.parallelize()实现分组并行化

如:sc.parallelize(data,800).map(run_model).reduce(merge)

上文还有一个节假日数据没有给出来,限于篇幅有限,整个代码就放在github上了,如需要请自取。

基本交代清楚了,暂更于此。

完整代码[pyspark_prophet]

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/151737.html原文链接:https://javaforall.cn