天天看点

快速入门Python机器学习(28)

1.4 凝聚聚类(agglomerative)

1.4.1原理

凝聚聚类(agglomerative clustering)指的是许多基于相同原则构建的聚类算法,这一原则是:算法首先声明每个点是自己的簇,然后合并两个最相似的簇,直到满足某种停止准则为止

度量相似值,Sklearn有四种选项:linkage : {"ward", "complete", "average", "single"}, optional (默认="ward")

  • ward链接:默认选项,挑选两个簇来合并,是的所有簇中的方差增加最小。这通常会得到大小差不多相等的簇。
  • average链接:也称为均链接,将簇中所有点之间"平均距离" 最小的两个簇合并。
  • complete链接:也称为最大链接,将簇中点之间"最大距离"最小的两个簇合并。
  • single链接:也称单链接,将簇中所有点之间"最小距离"最小的两个簇合并

ward适用于大多数数据集。如果簇中的成员个数非常不同(比如其中一个比其他所有都大得多),那么average或complete可能效果更好。

1.4.2类参数、属性和方法

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, *, affinity='euclidean', memory=None, connectivity=None, compute_full_tree='auto', linkage='ward', distance_threshold=None, compute_distances=False           

复制

属性

属性 类别 介绍
n_clusters_ int 算法找到的聚类数。如果距离阈值=无,它将等于给定的n个聚类。
labels_ ndarray of shape (n_samples) 每个点的聚类标签
n_leaves_ int 分层树中的树叶数量
n_connected_components_ int 图中连接组件的估计数量
children_ array-like of shape (n_samples-1, 2) 每个非叶节点的子节点。小于n_samples的值对应于作为原始样本的树叶。大于或等于n_samples的节点I是非叶节点,并且具有子代子代_[i - n_samples]。或者,在第I次迭代中,子[i][0]和子[i][1]被合并以形成节点n_samples + i
distances_ array-like of shape (n_nodes-1,) children_中相应位置的节点之间的距离。仅当使用距离阈值或计算距离设置为真时才计算。

方法

fit(X[, y, sample_weight]) 根据特征或距离矩阵执行DBSCAN聚类。
fit_predict(X[, y, sample_weight]) 从要素或距离矩阵执行DBSCAN聚类,并返回聚类标签。
get_params([deep]) 获取此估计器的参数。
set_params(**params) 设置此估计器的参数。

1.4.3对make_blobs数据进行凝聚聚类算法分析

#凝聚算法
from scipy.cluster.hierarchy import dendrogram,ward    
def agglomerative_algorithm():
    mglearn.plots.plot_agglomerative_algorithm()
    plt.show()
    blobs = make_blobs(random_state=1,centers=1)
    x_blobs = blobs[0]
    #使用连线方式进行可视化
    linkage =ward(x_blobs)
    dendrogram(linkage)
    ax = plt.gca() # gca:Get Current Axes
    #设定横纵轴标签
    plt.xlabel("sample index")
    plt.ylabel("Cluster distance")
    plt.show()           

复制

快速入门Python机器学习(28)
from sklearn.cluster import AgglomerativeClustering
def AgglomerativeClustering_for_blobs ():
        blobs = make_blobs(random_state=1,centers=1)
        X = blobs[0]
        y = blobs[1]
        #设置簇个数为3
        AC = AgglomerativeClustering(n_clusters=3)
        result = AC.fit_predict(X)
        print("训练集数据集分配簇标签为:\n{}".format(AC.labels_))
        print("对训练集数据集预测结果为:\n{}".format(result))
        #画出聚类后的数据集图像
        mglearn.discrete_scatter(X[:,0], X[:,1],AC.labels_,markers='o')
        plt.show()           

复制

输出

训练集数据集分配簇标签为:
[1 1 0 2 1 2 2 1 0 2 1 2 0 0 1 2 2 0 0 0 2 0 2 2 0 1 2 2 1 1 2 0 0 0 2 0 2 0 0 0 2 1 0 0 2 2 2 1 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 2 2 1 2 2 2 1 2 0 0 0 2 0 2 2 0 1 2 1 2 0 2 0 2 2 2 2 0 2 2 1]
对训练集数据集预测结果为:
[1 1 0 2 1 2 2 1 0 2 1 2 0 0 1 2 2 0 0 0 2 0 2 2 0 1 2 2 1 1 2 0 0 0 2 0 2 0 0 0 2 1 0 0 2 2 2 1 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 2 2 1 2 2 2 1 2 0 0 0 2 0 2 2 0 1 2 1 2 0 2 0 2 2 2 2 0 2 2 1]           

复制

快速入门Python机器学习(28)

1.4.4 凝聚聚类分析鸢尾花数据

def AgglomerativeClustering_for_iris():
        myutil = util()
        X,y = datasets.load_iris().data,datasets.load_iris().target
        AC = AgglomerativeClustering(n_clusters=3)
        AC.fit(X)
        result = AC.fit_predict(X)
        title = "鸢尾花"
        myutil.draw_scatter_for_Clustering(X,y,result,title,"凝聚算法")           

复制

输出

鸢尾花原始数据集分配簇标签为:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
鸢尾花 凝聚算法 训练簇标签为:
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 2 2 2 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 0]           

复制

快速入门Python机器学习(28)

1.4.5 凝聚聚类分析红酒数据

def AgglomerativeClustering_for_wine():
        myutil = util()
        X,y = datasets.load_wine().data,datasets.load_wine().target
        AC = AgglomerativeClustering(n_clusters=3)
        AC.fit(X)
        result = AC.fit_predict(X)
        title = "红酒"
        myutil.draw_scatter_for_Clustering(X,y,result,title,"凝聚算法")           

复制

输出

红酒原始数据集分配簇标签为:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
红酒 凝聚算法 训练簇标签为:
[0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 1 2 1 1 2 2 2 1 1 0 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 0 2 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1 2 1 1 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 2 1]           

复制

快速入门Python机器学习(28)

1.4.6 凝聚聚类分析乳腺癌数据

def AgglomerativeClustering_for_breast_cancer():
        myutil = util()
        X,y = datasets.load_breast_cancer().data,datasets.load_breast_cancer().target
        AC = AgglomerativeClustering(n_clusters=2)
        AC.fit(X)
        result = AC.fit_predict(X)
        title = "乳腺癌"
        myutil.draw_scatter_for_Clustering(X,y,result,title,"凝聚算法")           

复制

输出

乳腺癌原始数据集分配簇标签为:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…
 1 1 1 1 1 1 1 0 0 0 0 0 0 1]
乳腺癌 凝聚算法 训练簇标签为:
[1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0
…
0 0 0 0 0 0 0 0 1 1 1 0 1 0]           

复制

快速入门Python机器学习(28)

1.4.7 凝聚聚类分析两个月亮数据

#两个月亮
def KMeans_for_two_moon():
        myutil = util()
        X, y = datasets.make_moons(n_samples=200,noise=0.05, random_state=0)
        scaler = StandardScaler()
        scaler.fit(X)
        X_scaled = scaler.transform(X)
        # 打印处理后的数据形态
        print("处理后的数据形态:",X_scaled.shape)
        # 处理后的数据形态: (200, 2) 200个样本 2类    
        Kmeans = KMeans(n_clusters=2)
        result=Kmeans.fit_predict(X_scaled)
        title = "两个月亮"
        #绘制簇分配结果
        myutil.draw_scatter_for_Clustering(X,y,result,title,"KMeans")           

复制

输出

处理后的数据形态: (200, 2)
两个月亮原始数据集分配簇标签为:
[0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1
 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1
 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0
 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1
 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1
 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1]
两个月亮 凝聚算法 训练簇标签为:
[0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0
 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0
 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1
 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0           

复制

1 1 0 1 1 1 1 0 0 0 1 0 0 1 0]

快速入门Python机器学习(28)