天天看点

4--卷积神经网络(LeNet)

        LeNet,它是最早发布的卷积神经网络之一,被广泛用于自动取款机(ATM)机中,帮助识别处理支票的数字。 总体来看,LeNet(LeNet-5)由两个部分组成:

  • 卷积编码器:由两个卷积层组成;
  • 全连接层密集块:由三个全连接层组成。
4--卷积神经网络(LeNet)

        每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层。每个卷积层使用5×5卷积核和一个sigmoid激活函数。这些层将输入映射到多个二维特征输出,通常同时增加通道的数量。第一卷积层有6个输出通道,而第二个卷积层有16个输出通道。每个2×2池操作(步幅2)通过空间下采样将维数减少4倍。卷积的输出形状由批量大小、通道数、高度、宽度决定。

        将这个四维输入转换成全连接层所期望的二维输入。这里的二维表示的第一个维度索引小批量中的样本,第二个维度给出每个样本的平面向量表示。LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为在执行分类任务,所以输出层的10维对应于最后输出结果的数量。

        用深度学习框架实现该模型,只需要实例化一个

Sequential

块并将需要的层连接在一起。具体代码如下:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(2),#默认kernel_size=stride=2
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
           

        在数据集fashion_mnist上的运行结果,(epochs=10  lr=0.9):

4--卷积神经网络(LeNet)

         对LeNet模型进行修改,将激活函数从sigmoid改为relu(这里其实是可能存在过拟合的)(lr=0.09,epochs=10):

4--卷积神经网络(LeNet)
完整代码:
!pip install git+https://github.com/d2l-ai/[email protected]  # installing d2l
!pip install matplotlib_inline
!pip install matplotlib==3.0.0

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.ReLU(),
                    nn.AvgPool2d(2),nn.Conv2d(6,16,kernel_size=5),nn.ReLU(),
                    nn.AvgPool2d(2),nn.Flatten(),
                    nn.Linear(16*5*5,120),nn.ReLU(),
                    nn.Linear(120,84),nn.ReLU(),
                    nn.Linear(84,10)
                    )
batch_size = 256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net,data_iter,device=None):
  if isinstance(net,nn.Module):
    net.eval()## 设置为评估模式 表示接下来要开始训练了
    if not device:
      device = next(iter(net.parameters())).device
  metric = d2l.Accumulator(2)
  with torch.no_grad():
    for X,y in data_iter:
      if isinstance (X,list):
        x = [x.to(device)for x in X]
      else:
        X = X.to(device)
      y = y.to(device)
      metric.add(d2l.accuracy(net(X),y),y.numel())
  return metric[0]/metric[1]

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

lr,num_epochs = 0.01,30
train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
           

继续阅读