天天看點

華中師範大學2012年數學分析考研試題參考解答

一.

(1)證明:由${{x}_{1}}=\frac{1}{2},{{x}_{2}}=\frac{3}{8},{{x}_{3}}=\frac{55}{128},\cdots $,猜測$\{{{x}_{2n+1}}\}$單調遞減,$\{{{x}_{2n}}\}$單調遞增

下用數歸法先證$\sqrt{2}-1\le {{x}_{2n+1}}\le \frac{1}{2},\frac{3}{8}\le {{x}_{2n+1}}\le \sqrt{2}-1$

(1)當$n=1$時,$\sqrt{2}-1{{x}_{1}}=\frac{1}{2}$恒成立

(2)設$n=2k-1$時,$\sqrt{2}-1\le {{x}_{2k-1}}\le \frac{1}{2}$,則

\[{{x}_{2k+1}}=\frac{1}{2}(1-x_{2k}^{2})=\frac{1}{2}[1-\frac{1}{4}{{(1-x_{2k-1}^{2})}^{2}}]\in [\sqrt{2}-1,\frac{1}{2})\]

即當$n=2k+1$時也恒成立

由(1)(2)可知:$\sqrt{2}-1\le {{x}_{2n+1}}\le \frac{1}{2}$

同理可證$\frac{3}{8}\le {{x}_{2n+1}}\le \sqrt{2}-1$

再證$\{{{x}_{2n+1}}\}$單調遞減,$\{{{x}_{2n}}\}$單調遞增,同樣采用數學歸納法

(1)當$n=1$時,${{x}_{1}}=\frac{1}{2}\frac{55}{128}={{x}_{3}}$恒成立

(2)設$n=2k-1$時,${{x}_{2k-1}}\ge {{x}_{2k+1}}$,則

${{x}_{2k+3}}-{{x}_{2k+1}}=\frac{1}{8}[{{(1-x_{2k-1}^{2})}^{2}}-{{(1-x_{2k+1}^{2})}^{2}}]=\frac{1}{8}(x_{2k+1}^{2}-x_{2k-1}^{2})(2-x_{2k+1}^{2}-x_{2k-1}^{2})\le 0$

由(1)(2)可知:$\{{{x}_{2n+1}}\}$單調遞減

同理可證:$\{{{x}_{2n}}\}$單調遞增

于是$\{{{x}_{2n+1}}\}$單調遞減,$\sqrt{2}-1\le {{x}_{2n+1}}\le \frac{1}{2}$,由單調有界原理可知:$\{{{x}_{2n+1}}\}$收斂

于是不妨設$\underset{n\to +\infty }{\mathop{\lim }}\,{{x}_{2n+1}}=l\in [\sqrt{2}-1,\frac{1}{2}]$,由${{x}_{2k+3}}=\frac{1}{2}[1-\frac{1}{4}{{(1-x_{2k+1}^{2})}^{2}}]$,兩邊對$n\to +\infty $

則$l=\frac{1}{2}[1-\frac{1}{4}{{(1-{{l}^{2}})}^{2}}]$,求得$l=\sqrt{2}-1$

即$\underset{x\to \infty }{\mathop{\lim }}\,{{x}_{2n+1}}=\sqrt{2}-1=A$

同理可證$\underset{x\to \infty }{\mathop{\lim }}\,{{x}_{2n}}=\sqrt{2}-1=A$

于是$\underset{n\to +\infty }{\mathop{\lim }}\,{{x}_{n}}=\underset{n\to +\infty }{\mathop{\lim }}\,{{x}_{2n}}=\underset{n\to +\infty }{\mathop{\lim }}\,{{x}_{2n+1}}=A$

(3)證明:不妨設${{a}_{n}}={{x}_{n}}-A={{x}_{n}}-(\sqrt{2}-1)$

于是

$\underset{n\to +\infty }{\mathop{\lim }}\,\left| \frac{{{a}_{n+1}}}{{{a}_{n}}} \right|=\underset{n\to +\infty }{\mathop{\lim }}\,\left| \frac{{{x}_{n+1}}-A}{{{x}_{n}}-A} \right|=\underset{n\to +\infty }{\mathop{\lim }}\,\left| \frac{\frac{1}{2}(1-x_{n}^{2})-A}{{{x}_{n}}-A} \right|=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{2}\left| \frac{1-x_{n}^{2}-(2\sqrt{2}-2)}{{{x}_{n}}-(\sqrt{2}-1)} \right|=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{2}\left| \frac{x_{n}^{2}-{{(\sqrt{2}-1)}^{2}}}{{{x}_{n}}-(\sqrt{2}-1)} \right|=A1 $

于是$\sum\limits_{n=1}^{+\infty }{({{x}_{n}}}-A)$絕對收斂

二、

(1)成立,理由如下:

要證明${{\sin }^{3}}\left| f(x) \right|$在$I$上一緻連續,隻需證明$\left| f(x) \right|$在$I$上一緻連續即可

由于$f(x)$在$I$上一緻連續,則對任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in I$,存在$\delta 0$,當

$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $時,有$\left| f({{x}_{1}})-f({{x}_{2}}) \right|\varepsilon $

于是對任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in I$,存在$\delta 0$,當

$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $時,有$\left| \left| f({{x}_{1}}) \right|-\left| f({{x}_{2}}) \right| \right|\le \left| f({{x}_{1}})-f({{x}_{2}}) \right|\varepsilon $

即$\left| f(x) \right|$在$I$上一緻連續即可

對任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in I$,存在$\delta 0$,當

$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $時,有

$\left| {{\sin }^{3}}\left| f({{x}_{1}}) \right|-{{\sin }^{3}}\left| f({{x}_{1}}) \right| \right|=\left| (\sin \left| f({{x}_{1}}) \right|-\sin \left| f({{x}_{1}}) \right|)({{\sin }^{2}}\left| f({{x}_{1}}) \right|+\sin \left| f({{x}_{1}}) \right|\sin \left| f({{x}_{2}}) \right|+{{\sin }^{2}}\left| f({{x}_{2}}) \right| \right|$$\le 3\left| \sin \left| f({{x}_{1}}) \right|-\sin \left| f({{x}_{1}}) \right| \right|\le 3\left| \sin f({{x}_{1}})-\sin f({{x}_{2}}) \right|\le 3\left| f({{x}_{1}})-f({{x}_{2}}) \right|$

于是由複合函數的一緻收斂性可知:${{\sin }^{3}}\left| f(x) \right|$在$I$上一緻連續

(4)成立,理由如下

要證明${{\sin }^{3}}f(x)$在$I$上一緻連續,隻需證明$f(x)$在$I$上一緻連續即可

由于$\left| f(x) \right|$在$I$上一緻連續,則對任意的$\varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}\in I$,存在$\delta 0$,當

$\left| {{x}_{1}}-{{x}_{2}} \right|\delta $時,由$\left| \left| f({{x}_{1}}) \right|-\left| f({{x}_{2}}) \right| \right|\frac{\varepsilon }{2}$

1:若$f({{x}_{1}}),f({{x}_{2}})$同号,則有$\left| f({{x}_{1}})-f({{x}_{2}}) \right|\frac{\varepsilon }{2}\varepsilon $

2:若$f({{x}_{1}}),f({{x}_{2}})$同号,由$f(x)$連續,則存在$y$在${{x}_{1}},{{x}_{2}}$之間使得$f(y)=0$

于是$\left| f({{x}_{1}})-f({{x}_{2}}) \right|\le \left| f({{x}_{1}}) \right|+\left| f({{x}_{2}}) \right|=\left| \left| f({{x}_{1}}) \right|-\left| f(y) \right| \right|+\left| \left| f({{x}_{2}}) \right|-\left| f(y) \right| \right|\varepsilon $

由1,2可知,$f(x)$在$I$上一緻連續

再利用複合函數的一緻連續性可知,${{\sin }^{3}}f(x)$在$I$上一緻連續

三、證明:

充分性:反證法:假設對任意的$x\in (a,b)$都有$f(x)\le \frac{f(b)-f(a)}{b-a}$

令$g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$

則當$x\in (a,b)$時有$g(x)=f(x)-\frac{f(b)-f(a)}{b-a}\le 0$

于是$g(x)$在$[a,b]$上單調遞減

而$g(a)=g(b)=f(a)$

進而當$x\in [a,b]$時,$g(x)=f(a)$

于是$f(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$沖突

進而必存在$\xi \in (a,b)$,使得$f(\xi )\frac{f(b)-f(a)}{b-a}$

必要性:

則$g(a)=g(b)=f(a)$

反證法:

1:若$f(x)$為常函數,則$g(x)=f(x)-\frac{f(b)-f(a)}{b-a}=-\frac{f(b)-f(a)}{b-a},x\in [a,b]$

這與存在$\xi \in (a,b) $,使得$f(\xi )\frac{f(b)-f(a)}{b-a}$沖突

2:若$f(x)$為線性函數,可知$g(x)=f(x)-\frac{f(b)-f(a)}{b-a}$為常數

又由于存在$\xi \in (a,b) $,使得$f(\xi )\frac{f(b)-f(a)}{b-a}$可知,$g(x)0$

于是$g(x)$在$[a,b]$上嚴格單調遞增

而$g(a)=g(b)=f(a)$沖突

進而由1,2可知,$f(x)$不為常函數或線性函數

四、

(1)證明:設$F\left( x,y \right)={{x}^{2}}+y-\cos \left( xy \right) $,

顯然,有$F\left( 0,1 \right)=0 $,

${{F}_{y}}\left( x,y \right)=1+x\sin \left( xy \right) $,

${{F}_{y}}\left( 0,1 \right)=1\ne 0 $,由隐函數存在定理,

存在$\delta 0 $,存在$\left[ -\delta ,\delta \right] $上的連續可微的函數$y=y\left( x \right)$,$y\left( 0 \right)=1 $,

滿足$F\left( x,y\left( x \right) \right)\equiv 0 $,$x\in U(0) $

(3)證明:由(1)可知:

${{F}_{x}}\left( x,y \right)=2x+y\sin \left( xy \right) $,

${y}\left( x \right)=-\frac{{{F}_{x}}\left( x,y \right)}{{{F}_{y}}\left( x,y \right)}=-\frac{2x+y\sin \left( xy \right)}{1+x\sin \left( xy \right)} $,

當$0x\delta $,($\delta 0 $充分小)時,有${y}\left( x \right)0 $,$y\left( x \right) $在$\left[ 0,\delta \right] $上嚴格單調遞減;

當$-\delta x0 $時,有${y}\left( x \right)0 $,$y\left( x \right) $在$\left[ -\delta ,0 \right] $上嚴格單調遞增,

五、

(1)解:(1)由偏導數的定義:

${{f}_{x}}(0,0)=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f(\Delta x,0)-f(0,0)}{\Delta x}=\underset{\Delta x\to 0}{\mathop{\lim }}\,\Delta x\cos \frac{1}{\left| \Delta x \right|}=0 $

${{f}_{y}}(0,0)=\underset{\Delta y\to 0}{\mathop{\lim }}\,\frac{f(0,\Delta y)-f(0,0)}{\Delta y}=\underset{\Delta y\to 0}{\mathop{\lim }}\,\Delta y\cos \frac{1}{\left| \Delta y \right|}=0\ $

(2)當$(x,y)\ne (0,0)$時,

${{f}_{x}}(x,y)=2x\cos \frac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\sin \frac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}}} $

${{f}_{y}}(x,y)=2y\cos \frac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\sin \frac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}}} $

于是${f_x}(x,y)=\left\{\begin{array}{ll}2x\cos \frac{1}{{\sqrt {{x^2} + {y^2}} }} + \frac{x}{{\sqrt {{x^2} + {y^2}} }}\sin \frac{1}{{\sqrt {{x^2} + {y^2}} }}, \hbox{${x^2} + {y^2} \ne 0$} \\0, \hbox{${x^2} + {y^2} = 0$.}\end{array}\right.$

${f_y}(x,y)=\left\{\begin{array}{ll}2y\cos \frac{1}{{\sqrt {{x^2} + {y^2}} }} +

\frac{y}{{\sqrt {{x^2} + {y^2}} }}\sin \frac{1}{{\sqrt {{x^2} + {y^2}} }},,

\hbox{${x^2} + {y^2} \ne 0$} \\ 0, \hbox{${x^2} + {y^2} = 0$.}\end{array}\right.$

(2)設$y=kx$,于是$\underset{x\to 0}{\mathop{\lim

}}\,\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}=\frac{1}{\sqrt{1+{{k}^{2}}}}$與$k$有關

于是$\underset{x\to 0}{\mathop{\lim

}}\,{{f}_{x}}(x,0) $不存在,故${{f}_{x}}(x,y)

$在(0,0)不連續。

同理${{f}_{y}}(x,y) $ 在(0,0)也不連續。

(3)設$u=f(x,y)

$,則在(0,0)點有

$\Delta

u-du=[f(\Delta x,\Delta y)-f(0,0)]-[{{f}_{x}}(0,0)\Delta x+{{f}_{y}}(0,0)\Delta

y]=(\Delta {{x}^{2}}+\Delta {{y}^{2}})\cos \frac{1}{\sqrt{\Delta

{{x}^{2}}+\Delta {{y}^{2}}}} $

因$\underset{\Delta x\to 0,\Delta y\to

0}{\mathop{\lim }}\,\frac{\Delta u-du}{\sqrt{\Delta {{x}^{2}}+\Delta

{{y}^{2}}}}=\underset{\Delta x\to 0,\Delta y\to 0}{\mathop{\lim

}}\,\sqrt{\Delta {{x}^{2}}+\Delta {{y}^{2}}}\cos \frac{1}{\sqrt{\Delta

{{x}^{2}}+\Delta {{y}^{2}}}}=0$

故$f(x,y) $在(0,0)可微。

六、解:由于$y=x+y,y(0)=1$

利用常數變易法求得$y=-1-x+2{{e}^{x}}$

記${{a}_{n}}=y(\frac{1}{n})-1-\frac{1}{n}=2({{e}^{\frac{1}{n}}}-1-\frac{1}{n})$

由$\underset{n\to +\infty }{\mathop{\lim

}}\,\sqrt[n]{{{a}_{n}}}={{e}^{\underset{n\to +\infty }{\mathop{\lim }}\,\frac{\ln

{{a}_{n}}}{n}}}={{e}^{\underset{n\to +\infty }{\mathop{\lim }}\,\frac{\ln

2({{e}^{\frac{1}{n}}}-1-\frac{1}{n})}{n}}}\overset{n=\frac{1}{x}}{\mathop{=}}\,{{e}^{\underset{x\to

+{{0}^{+}}}{\mathop{\lim }}\,\frac{\ln 2({{e}^{x}}-1-x)}{\frac{1}{x}}}}={{e}^{-\underset{x\to

+{{0}^{+}}}{\mathop{\lim

}}\,\frac{{{x}^{2}}({{e}^{x}}-1)}{{{e}^{x}}-1-x}}}={{e}^{-\underset{x\to

}}\,\frac{{{x}^{2}}[x+o(x)]}{\frac{{{x}^{2}}}{2}+o({{x}^{2}})}}}=1 $

于是幂級數的收斂半徑$R=1$

又由于$x=1$時,$y(\frac{1}{n})-1-\frac{1}{n}=2({{e}^{\frac{1}{n}}}-1-\frac{1}{n})=\sum\limits_{n=1}^{+\infty

}{\frac{2}{{{n}^{2}}}+}\sum\limits_{n=1}^{+\infty }{o(\frac{2}{{{n}^{2}}}})$收斂

$x=-1$時,由萊布利茲判别法可知級數收斂

于是該幂級數的收斂域為$[-1,1]$

七、

(1)證明:令$u={{t}^{2}}\Rightarrow

t=\sqrt{u},dt=\frac{1}{2\sqrt{u}}du$,于是$\int_{x}^{x+c}{\sin

{{t}^{2}}}dt=\frac{1}{2}\int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{\frac{\sin

u}{\sqrt{u}}}du $

而函數$\frac{1}{\sqrt{u}}$在$[{{x}^{2}},{{(x+c)}^{2}}]$上遞減,且$\frac{1}{\sqrt{u}}\ge 0$,由積分第二中值定理可知:

存在$\xi \in [{{x}^{2}},{{(x+c)}^{2}}]$,使得

$\int_{x}^{x+c}{\sin

u}{\sqrt{u}}}du=\frac{1}{2x}\int_{{{x}^{2}}}^{\xi }{\sin udu=\frac{1}{2x}(\cos

{{x}^{2}}-\cos \xi )} $

故$\left| \int_{x}^{x+c}{\sin {{t}^{2}}}dt

\right|\le \frac{1}{x}$

(2)能,理由如下

證明:

令$f(x)=\int_{x}^{x+c}{\sin

u}{\sqrt{u}}}du=-\frac{1}{2}\frac{\cos

u}{\sqrt{u}}|_{{{x}^{2}}}^{{{(x+c)}^{2}}}-\frac{1}{4}\int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{\frac{\sin

u}{{{u}^{\frac{3}{2}}}}}du$

$=\frac{\cos

{{x}^{2}}}{2x}-\frac{\cos

{{(x+c)}^{2}}}{2(x+c)}-\frac{1}{4}\int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{\frac{\sin

存在${{u}_{0}}\in [{{x}^{2}},{{(x+c)}^{2}}]$,使得$\left| \frac{\cos

{{u}_{0}}}{u_{0}^{\frac{3}{2}}} \right|\frac{1}{{{u}^{\frac{3}{2}}}}$,是以當$x0$時,有

$\left|

f(x) \right|\le \left| \frac{\cos {{x}^{2}}}{2x} \right|+\left| \frac{\cos

{{(x+c)}^{2}}}{2(x+c)} \right|+\frac{1}{4}\int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{\left|

\frac{\cos u}{{{u}^{\frac{3}{2}}}}

\right|}du\frac{1}{2x}+\frac{1}{2(x+c)}+\frac{1}{4}\int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{\frac{1}{{{u}^{\frac{3}{2}}}}}du

$

$=\frac{1}{2x}+\frac{1}{2(x+c)}+\frac{1}{4}(-2{{u}^{-\frac{1}{2}}})|_{{{x}^{2}}}^{{{(x+c)}^{2}}}=\frac{1}{x}$

八、證明:對${{R}^{2}}$上任意一點$({{x}_{0}},{{y}_{0}})$,令${{L}_{1}}=\{x|{{(x-{{x}_{0}})}^{2}}={{r}^{2}}\}$,方向取逆時針

由格林公式可知:

$\int_{L}{Pdx+Qdy=}\int_{L+{{L}_{1}}}{Pdx+Qdy=\iint_{D}{[\frac{\partial

Q}{\partial x}}}-\frac{\partial P}{\partial y}]dxdy=[\frac{\partial Q}{\partial

x}-\frac{\partial P}{\partial y}]{{|}_{M}}\pi {{r}^{2}}=0$

其中$D$是由$L+{{L}_{1}}$包圍的圖形,$M\in D$

另一方面由積分中值定理可知:

$\int_{L}{Pdx+Qdy=}-\int_{{{L}_{1}}}{P(x,{{y}_{0}}})dx=-P({{x}_{1}},{{y}_{0}})\cdot

2r$

其中$({{x}_{1}},{{y}_{0}})\in {{L}_{1}}$

比較這兩個式子知:

$[\frac{\partial

Q}{\partial x}-\frac{\partial P}{\partial y}]{{|}_{M}}\pi

{{r}^{2}}=-P({{x}_{1}},{{y}_{0}})\cdot 2r\Rightarrow [\frac{\partial

Q}{\partial x}-\frac{\partial P}{\partial y}]{{|}_{M}}\frac{\pi

r}{2}=-P({{x}_{1}},{{y}_{0}})$

令$r\to 0$可知:$P({{x}_{0}},{{y}_{0}})=0$,由$({{x}_{0}},{{y}_{0}})$的任意性可知,$P(x,y)=0$

進而有 $[\frac{\partial Q}{\partial

x}-\frac{\partial P}{\partial y}]{{|}_{M}}$,令$r\to 0$可知$[\frac{\partial Q}{\partial x}-\frac{\partial

P}{\partial y}]{{|}_{({{x}_{0}},{{y}_{0}})}}=0$,由$({{x}_{0}},{{y}_{0}})$的任意性可知,$\frac{\partial Q}{\partial x}=0$

繼續閱讀