天天看點

機器學習-決策樹-ID3決策樹

機器學習-決策樹-ID3決策樹

原理看上一篇,這篇隻有代碼實作

它以資訊熵為度量标準,劃分出決策樹特征節點,每次優先選取資訊量最多的屬性,也就是使資訊熵變為最小的屬性,以構造一顆資訊熵下降最快的決策樹。

缺點

代碼

from numpy import *
import math
import copy
import pickle

# ID3決策樹的實作
class ID3DTree(object):
    def __init__(self): # 構造方法
        self.tree = {}  # 生成的樹
        self.dataSet = []   # 資料集
        self.labels = []    # 标簽集

    # 資料導入函數
    def loadDataSet(self, path, labels):
        recordlist = []
        fp = open(path, "r")   # 讀取檔案内容
        content = fp.read()
        fp.close()
        rowlist = content.splitlines()  # 按行轉換為一維表
        recordlist = [row.split("\t") for row in rowlist if row.strip()]
        self.dataSet = recordlist
        self.labels = labels

    # 執行決策樹函數
    def train(self):
        labels = copy.deepcopy(self.labels)
        self.tree = self.buildTree(self.dataSet, labels)

    # 建立決策樹主程式
    def buildTree(self, dataSet, labels):
        cateList = [data[-1] for data in dataSet]   # 抽取源資料集的決策标簽列
        # 程式終止條件1:如果classList隻有一種決策标簽,停止劃分,傳回這個決策标簽
        if cateList.count(cateList[0]) == len(cateList):
            return cateList[0]
        # 程式終止條件2:如果資料集的第一個決策标簽隻有一個,則傳回這個決策标簽
        if len(dataSet[0]) == 1:
            return self.maxCate(cateList)
        # 算法核心:
        bestFeat = self.getBestFeat(dataSet)    # 傳回資料集的最優特征軸
        bestFeatLabel = labels[bestFeat]
        tree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        #抽取最優特征軸的列向量
        uniqueVals = set([data[bestFeat] for data in dataSet])  #去重
        for value in uniqueVals:    # 決策樹遞歸生長
            subLabels = labels[:]   # 将删除後的特征類别集建立子類别集
            # 按最優特征列和值分隔資料集
            splitDataset = self.splitDataSet(dataSet, bestFeat, value)
            subTree = self.buildTree(splitDataset, subLabels)   # 建構子樹
            tree[bestFeatLabel][value] = subTree
        return tree

    # 計算出現次數最多的類别标簽
    def maxCate(self, catelist):
        items = dict([(catelist.count(i), i) for i in catelist])
        return items[max(items.keys())]

    # 計算最優特征
    def getBestFeat(self, dataSet):
        # 計算特征向量維,其中最後一列用于類别标簽,是以要減去
        numFeatures = len(dataSet[0]) - 1   # 特征向量維數=行向量次元-1
        baseEntropy = self.computeEntropy(dataSet)  # 基礎熵:源資料的香農熵
        bestInfoGain = 0.0  # 初始化最優的資訊增益
        bestFeature = -1    # 初始化最優的特征軸
        # 外循環:周遊資料集各列,計算最優特征軸
        # i 為資料集列索引:取值範圍 0-(numFeatures-1)
        for i in range(numFeatures):    # 抽取第i列的列向量
            uniqueVals = set([data[i] for data in dataSet]) # 去重:該列的唯一值集
            newEntropy = 0.0    # 初始化該列的香農熵
            for value in uniqueVals:    # 内循環:按列和唯一值計算香農熵
                # 按標明列i和唯一值分隔資料集
                subDataSet = self.splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / float(len(dataSet))    # 即類别發生的機率
                newEntropy += prob * self.computeEntropy(subDataSet)    # 子集資訊熵或期望=類别子集發生的機率 * 資訊熵
            infoGain = baseEntropy - newEntropy # 計算最大增益
            if (infoGain > bestInfoGain):   # 如果資訊增益>0
                bestInfoGain = infoGain     # 用目前資訊增益值替代之前的最優增益值
                bestFeature = i             # 重置最優特征為目前列
        return bestFeature

    # 計算資訊熵
    def computeEntropy(self, dataSet):
        datalen = float(len(dataSet))
        cateList = [data[-1] for data in dataSet]   # 從資料集中得到類别标簽
        # 得到類别為key、出現次數value的字典
        items = dict([(i, cateList.count(i)) for i in cateList])
        infoEntropy = 0.0   # 初始化香農熵
        for key in items:   # 香農熵:
            prob = float(items[key]) / datalen
            infoEntropy -= prob * math.log(prob, 2)
        return infoEntropy

    # 劃分資料集;分隔資料集;删除特征軸所在的資料列,傳回剩餘的資料集
    # dataSet:資料集   axis:特征軸    value:特征軸的取值
    def splitDataSet(self, dataSet, axis, value):
        rtnList = []
        for featVec in dataSet:
            if featVec[axis] == value:
                rFeatVec = featVec[:axis]   # list操作:提取0~(axis-1)的元素
                rFeatVec.extend(featVec[axis+1:])   # list操作:将特征軸(列)之後的元素加回
                rtnList.append(rFeatVec)
        return rtnList

    # 分類
    def predict(self, inputTree, featLabels, testVec):
        root = list(inputTree.keys())[0]  # 樹根節點
        secondDict = inputTree[root]    # value-子樹結構或分類标簽
        featIndex = featLabels.index(root) # 根節點在分類标簽集中的位置
        key = testVec[featIndex]    # 測試集數組取值
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict):
            classLabel = self.predict(valueOfFeat, featLabels, testVec) #遞歸分類
        else: classLabel = valueOfFeat
        return classLabel

    # 持久化
    def storeTree(self, inputTree, filename):
        fw = open(filename, 'wb')
        pickle.dump(inputTree, fw)
        fw.close()

    # 從檔案抓取樹
    def grabTree(self, filename):
        fr = open(filename,'rb')
        return pickle.load(fr)


#訓練
dtree = ID3DTree()
dtree.loadDataSet("/Users/FengZhen/Desktop/accumulate/機器學習/決策樹/決策樹訓練集.txt", ["age", "revenue", "student", "credit"])
dtree.train()
print(dtree.tree)

#持久化
# dtree.storeTree(dtree.tree, "/Users/FengZhen/Desktop/accumulate/機器學習/決策樹/決策樹.tree")
mytree = dtree.grabTree("/Users/FengZhen/Desktop/accumulate/機器學習/決策樹/決策樹.tree")
print(mytree)

#測試
labels = ["age", "revenue", "student", "credit"]
vector = ['0','1','0','0']
print(dtree.predict(mytree, labels, vector))