天天看点

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

最快下降法

假设 hTF′(x)<0 ,则h是 F(x) 下降方向,即对于任意足够小的 α>0 ,都满足 F(x+αh)<F(x) 。

现在讨论 F(x) 沿着h方向下降快慢:

limα→0F(x)−F(x+αh)α∥h∥=−1∥h∥hTF′(x)=−∥∥F′(x)∥∥cosθ

其中 θ 为矢量h和 F′(x) 夹角,当 θ=π 时,下降最大。

即 hsd=−F′(x) ,是最快下降方向。

最小二乘问题

通常的最小二乘问题都可以表示为:

F(x)=12∑i=1n(fi(x)2)=12∥f(x)∥2=12f(x)Tf(x)

找到一个 x∗ 使得 x∗=argminxF(x) ,其中 x=[x1x2⋯xm] , f(x)=[f1(x)f2(x)⋯fn(x)] 。

假设对 f(x) 第 i 个分量fi(x)在点 xk 处Taylor展开,

fi(xk+h)≈fi(xk)+∇fi(xk)Th , i=1,2⋯n

则 f(xk+h)≈f(xk)+J(xk)h ,其中Jacobin矩阵

J(xk)=⎡⎣⎢⎢⎢⎢⎢∇f1(xk)T∇f2(xk)T⋮∇fn(xk)⎤⎦⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢∂f1(xk)∂x1∂f2(xk)∂x1⋮∂fn(xk)∂x1∂f1(xk)∂x2∂f2(xk)∂x2⋮∂fn(xk)∂x2⋯⋯⋱⋯∂f1(xk)∂xm∂f2(xk)∂xm⋮∂fn(xk)∂xm⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

通常记 fk=f(xk) , Jk=J(xk) .

∂F(x)∂xj=∑i=1nfi(x)∂fi(x)∂xj

所以 F(x) 的梯度:

g=F′(x)=J(x)Tf(x)

GaussNewton

选择 h 使得F(x)在 xk 附近二阶近似,则

F(xk+h)≈L(h)=12f(xk+h)Tf(xk+h)=12fTkfk+hTJTkfk+12hTJTkJkh=F(xk)+hTJTkfk+12hTJTkJkh

为使 F(xk+h) 取得极小值, L(h) 对h一阶导数 ∂L(h)∂h=JTkfk+JTkJkh ,令 L′(h)=0 ,则 (JTkJk)hgn=−JTkfk 。

当 JTkJk 非奇异的时候, hgn=−(JTkJk)−1JTkfk , xk+1=xk+hgn 。

由于GaussNewton求解过程中需要对 JTJ 求逆,所以当 JTJ 变成奇异的,GaussNewton方法失效。另外当 x0 离极小点较远时,GaussNewton算法可能会发散。

总结以上,GaussNewton法一般求解步骤:

- step1:根据 (JTkJk)hgn=−JTkfk ,求解迭代步长 hgn ;

- step2: xk+1=xk+hgn 进行新的迭代;

- step3:若 |F(xk+1)−F(xk)|<ϵ ,其中 ϵ 足够小,则认为 F(x) 以收敛,则退出迭代,否则重复step1;

通常GaussNewton法收敛较快,但是不稳定。而最快下降法稳定,但是收敛较慢。所以接下来我们介绍GaussNewton和最快下降法混合法。

LM阻尼最小二乘法

GaussNewton法是用 (JTkJk)h=−JTkfk 来确定 h ,现在假设在JTkJk对角线上元素都加上同一个数 u>0 ,

(JTkJk+uI)h=−JTkfk

这样即使当 JTkJk 奇异,只要 u 取得充分大,总能使(JTkJk+uI)正定,则 (JTkJk+uI)h=−JTkfk 肯定有解。这个解依赖于 u ,记作hlm。

⎧⎩⎨⎪⎪当u=0当u充分大hlm≈hgn,即为GaussNewton法.uIhlm≈−JTkfk,hlm=−1uJTkfk,即为最快下降法.特别当u→∞,∥hlm∥→0

因此 u 起着使步长∥hlm∥缩短的或阻尼的作用,此即为阻尼最小二乘法。

那么LM阻尼最小二乘法实际迭代过程中怎样调整 u ?

假设∥h∥足够小,对 f(x+h) 一阶近似 f(x+h)≈ι(h)=f(x)+J(x)h

则对 F(x+h) 二阶近似,

F(x+h)≈L(h)=12f(x+h)Tf(x+h)=12fTf+hTJTf+12hTJTJh=F(x)+hTJTf+12hTJTJh

我们定义一个增益比 ρ=F(x)−F(x+hlm)L(0)−L(hlm)

在实际中,我们选择一阶近似、二阶近似并不是在所有定义域都满足的,而是在 [x−ϵ,x+ϵ] 作用域内满足这个近似条件。

当 ρ 较大时,表明 F(x+h) 的二阶近似 L(h) 比 F(x+h) 更加接近于 F(x) ,因此二阶近似比较好,所以可以减小 u ,采用更大的迭代步长,接近GaussNewton法来更快收敛;

而当ρ较小时,表明采取的二阶近似较差,因此通过增大 u ,采用更小的步长,接近最快下降法来稳定的迭代。

一种比较好的阻尼系数u随 ρ 选择策略:

初始值 A0=J(x0)TJ(x0) , u0=τ∗max{aii} , v0=2 ,算法对 τ 取值不敏感, τ 可以取 10−6 、 10−3 或者1都可以。

{if ρ>0elseu:=u∗max{13,1−(2ρ−1)3}u:=u∗vv:=2;v:=2∗v;

总结以上,LM阻尼最小二乘法求解步骤:

- step1:初始化 u0=τ∗max{aii} , v0=2 ;

- step2:求解梯度 gk=JTkfk ,如果 ∥gk∥≤ϵ1 ,则退出,否则继续;

- step3:根据 (JTkJk+ukI)hlm=−JTkfk ,求解迭代步长 hlm 。若 ∥hlm∥≤ϵ2(∥x∥+ϵ2) ,则退出迭代,否则继续;

- step4: xnew=xk+hlm ,计算增益比 ρ=F(xk)−F(xnew)L(0)−L(hlm) 。

如果 ρ>0 ,则 xk+1=xnew , uk+1=uk∗max{13,1−(2ρ−1)3} , vk+1=2 ;

否则 uk+1=uk∗vk , vk+1=2∗vk 。重复step2;

对于 ϵ1 、 ϵ2 可以选取任意小的值如 10−12 ,只是作为迭代的终止条件,其值得选取对最终的收敛结果影响不大。

Dog-Leg最小二乘法

另外一个GaussNewton和最快下降法混合方法是Dog-Leg法,代替阻尼项而是用trust region。

回到上面讲到最快下降法,下降方向 hsd=−F′(xk)=−JTkfk ,但是步进多长呢?或者沿着这个方向步进多长能使得 F(x) 取得最大程度的下降呢?

假设 f(x+αhsd)≈f(x)+αJ(x)hsd

F(x+αhsd)≈=12∥f(x)+αJ(x)hsd∥2F(x)+αhTsdJ(x)Tf(x)+12α2∥J(x)hsd∥2

为使得 F(x+αhsd) 最小,对 α 求导,

α=−hTsdJ(x)Tf(x)∥J(x)hsd∥2=∥g∥2∥J(x)g∥2

则如果GaussNewton法则 xk+1−xk=hgn ;如果最快下降法则 xk+1−xk=αhsd 。

继续trust region是什么呢?

trust region即为在 ∥h∥≤Δ 范围内, F(x+h)=F(x)+hTJTf+12hTJTJh 能够较好的近似,因此不管我们在选择GaussNewton还是最快下降法,必须满足 ∥∥hgn∥∥≤Δ 、 ∥αhsd∥≤Δ ,二阶近似才能较好成立。

然后继续,Dog-Leg迭代步长 hdl 和 hgn 、 αhsd 、 Δ 有什么关系?

⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪if ∥∥hgn∥∥≤Δelse if ∥αhsd∥≥Δelsehdl=hgnhdl=Δ∥hsd∥hsdhdl=αhsd+β(hgn−αhsd)选择β使得∥hdl∥=Δ

hdl 和 hgn 、 αhsd 、 Δ 关系示意图:

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

和阻尼最小二乘法类似,实际中怎样更新trust region半径呢?

继续选择增益比 ρ=F(x)−F(x+hdl)L(0)−L(hdl)

{if ρ>0.75if ρ<0.25Δ:=max{Δ,3∗∥hdl∥}Δ:=Δ/2

总结以上,Dog-Leg最小二乘法求解步骤:

- step1:初始化 Δ0 。

- step2:求解梯度 gk=JTkfk ,如果 ∥gk∥≤ϵ1 ,则退出,否则继续。如果 ∥f(xk)∥≤ϵ3 ,则退出,否则继续。

- step3:如果trust region半径 Δk≤ϵ2(∥xk∥+ϵ2) ,则退出迭代;否则继续;

- step4:分别根据GaussNewton法和最快下降法计算 hgn 和 hsd ,然后计算最快下降法的迭代步长 α=∥g∥2∥J(x)g∥2 。

- step5:根据 hgn 、 hsd 和trust region半径 Δk ,来计算Dog-Leg步进值 hdl 。若 ∥hdl∥≤ϵ2(∥xk∥+ϵ2) ,则退出迭代;否则继续。

- step6: xnew=xk+hdl ,计算增益比 ρ=F(xk)−F(xnew)L(0)−L(hdl) 。

⎧⎩⎨if ρ>0if ρ>0.75elseif ρ<0.25xk+1=xnew;Δk+1=max{Δk,3∗∥hdl∥};Δk+1=Δk/2;

重复step2。

对于 ϵ1 、 ϵ2 、 ϵ3 可以选取任意小的值如 10−12 ,只是作为迭代的终止条件,其值得选取对最终的收敛结果影响不大。

举例:

拟合 f(x)=Asin(Bx)+Ccos(Dx) ,假设4个参数已知A=5、B=1、C=10、D=2,构造100个随机数作为x的采样值,然后计算 f(x) 再在上面加一个随机扰动量作为观测值。然后,利用输入与输出,来反推四个参数。

Gauss Newton代码:

double func(const VectorXd& input, const VectorXd& output, const VectorXd& params, double objIndex)
{
    // obj = A * sin(Bx) + C * cos(D*x) - F
    double x1 = params();
    double x2 = params();
    double x3 = params();
    double x4 = params();

    double t = input(objIndex);
    double f = output(objIndex);

    return x1 * sin(x2 * t) + x3 * cos( x4 * t) - f;
}

//return vector make up of func() element.
VectorXd objF(const VectorXd& input, const VectorXd& output, const VectorXd& params)
{
    VectorXd obj(input.rows());
    for(int i = ; i < input.rows(); i++)
        obj(i) = func(input, output, params, i);

    return obj;
}

//F = (f ^t * f)/2
double Func(const VectorXd& obj)
{
    return obj.squaredNorm()/;
}

double Deriv(const VectorXd& input, const VectorXd& output, int objIndex, const VectorXd& params,
                 int paraIndex)
{
    VectorXd para1 = params;
    VectorXd para2 = params;

    para1(paraIndex) -= DERIV_STEP;
    para2(paraIndex) += DERIV_STEP;

    double obj1 = func(input, output, para1, objIndex);
    double obj2 = func(input, output, para2, objIndex);

    return (obj2 - obj1) / ( * DERIV_STEP);
}

MatrixXd Jacobin(const VectorXd& input, const VectorXd& output, const VectorXd& params)
{
    int rowNum = input.rows();
    int colNum = params.rows();

    MatrixXd Jac(rowNum, colNum);

    for (int i = ; i < rowNum; i++)
    {
        for (int j = ; j < colNum; j++)
        {
            Jac(i,j) = Deriv(input, output, i, params, j);
        }
    }
    return Jac;
}

void gaussNewton(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
    int errNum = input.rows();      //error  num
    int paraNum = params.rows();    //parameter  num

    VectorXd obj(errNum);

    double last_sum = ;

    int iterCnt = ;
    while (iterCnt < MAX_ITER)
    {
        obj = objF(input, output, params);

        double sum = ;
        sum = Func(obj);

        cout << "Iterator index: " << iterCnt << endl;
        cout << "parameter: " << endl << params << endl;
        cout << "error sum: " << endl << sum << endl << endl;

        if (fabs(sum - last_sum) <= )
            break;
        last_sum = sum;

        MatrixXd Jac = Jacobin(input, output, params);
        VectorXd delta(paraNum);
        delta = (Jac.transpose() * Jac).inverse() * Jac.transpose() * obj;

        params -= delta;
        iterCnt++;
    }
}
           

LM代码:

double maxMatrixDiagonale(const MatrixXd& Hessian)
{
    int max = ;
    for(int i = ; i < Hessian.rows(); i++)
    {
        if(Hessian(i,i) > max)
            max = Hessian(i,i);
    }

    return max;
}

//L(h) = F(x) + h^t*J^t*f + h^t*J^t*J*h/2
//deltaL = h^t * (u * h - g)/2
double linerDeltaL(const VectorXd& step, const VectorXd& gradient, const double u)
{
    double L = step.transpose() * (u * step - gradient);
    return L/;
}

void levenMar(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
    int errNum = input.rows();      //error num
    int paraNum = params.rows();    //parameter num

    //initial parameter 
    VectorXd obj = objF(input,output,params);
    MatrixXd Jac = Jacobin(input, output, params);  //jacobin
    MatrixXd A = Jac.transpose() * Jac;             //Hessian
    VectorXd gradient = Jac.transpose() * obj;      //gradient

    //initial parameter tao v epsilon1 epsilon2
    double tao = ;
    long long v = ;
    double eps1 = , eps2 = ;
    double u = tao * maxMatrixDiagonale(A);
    bool found = gradient.norm() <= eps1;
    if(found) return;

    double last_sum = ;
    int iterCnt = ;

    while (iterCnt < MAX_ITER)
    {
        VectorXd obj = objF(input,output,params);

        MatrixXd Jac = Jacobin(input, output, params);  //jacobin
        MatrixXd A = Jac.transpose() * Jac;             //Hessian
        VectorXd gradient = Jac.transpose() * obj;      //gradient

        if( gradient.norm() <= eps1 )
        {
            cout << "stop g(x) = 0 for a local minimizer optimizer." << endl;
            break;
        }

        cout << "A: " << endl << A << endl; 

        VectorXd step = (A + u * MatrixXd::Identity(paraNum, paraNum)).inverse() * gradient; //negtive Hlm.

        cout << "step: " << endl << step << endl;

        if( step.norm() <= eps2*(params.norm() + eps2) )
        {
            cout << "stop because change in x is small" << endl;
            break;
        } 

        VectorXd paramsNew(params.rows());
        paramsNew = params - step; //h_lm = -step;

        //compute f(x)
        obj = objF(input,output,params);

        //compute f(x_new)
        VectorXd obj_new = objF(input,output,paramsNew);

        double deltaF = Func(obj) - Func(obj_new);
        double deltaL = linerDeltaL(- * step, gradient, u);

        double roi = deltaF / deltaL;
        cout << "roi is : " << roi << endl;
        if(roi > )
        {
            params = paramsNew;
            u *= max(/, -pow(*roi-, ));
            v = ;
        }
        else
        {
            u = u * v;
            v = v * ;
        }

        cout << "u = " << u << " v = " << v << endl;

        iterCnt++;
        cout << "Iterator " << iterCnt << " times, result is :" << endl << endl;
    }
}
           

Dog-Leg代码:

void dogLeg(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
    int errNum = input.rows();      //error num
    int paraNum = params.rows();    //parameter num

    VectorXd obj = objF(input, output, params);
    MatrixXd Jac = Jacobin(input, output, params);  //jacobin
    VectorXd gradient = Jac.transpose() * obj;      //gradient

    //initial parameter tao v epsilon1 epsilon2
    double eps1 = , eps2 = , eps3 = ;
    double radius = ;

    bool found  = obj.norm() <= eps3 || gradient.norm() <= eps1;
    if(found) return;

    double last_sum = ;
    int iterCnt = ;
    while(iterCnt < MAX_ITER)
    {
        VectorXd obj = objF(input, output, params);
        MatrixXd Jac = Jacobin(input, output, params);  //jacobin
        VectorXd gradient = Jac.transpose() * obj;      //gradient

        if( gradient.norm() <= eps1 )
        {
            cout << "stop F'(x) = g(x) = 0 for a global minimizer optimizer." << endl;
            break;
        }
        if(obj.norm() <= eps3)
        {
            cout << "stop f(x) = 0 for f(x) is so small";
            break;
        }

        //compute how far go along stepest descent direction.
        double alpha = gradient.squaredNorm() / (Jac * gradient).squaredNorm();
        //compute gauss newton step and stepest descent step.
        VectorXd stepest_descent = -alpha * gradient;
        VectorXd gauss_newton = (Jac.transpose() * Jac).inverse() * Jac.transpose() * obj * (-);

        double beta = ;

        //compute dog-leg step.
        VectorXd dog_leg(params.rows());
        if(gauss_newton.norm() <= radius)
            dog_leg = gauss_newton;
        else if(alpha * stepest_descent.norm() >= radius)
            dog_leg = (radius / stepest_descent.norm()) * stepest_descent;
        else
        {
            VectorXd a = alpha * stepest_descent;
            VectorXd b = gauss_newton;
            double c = a.transpose() * (b - a);
            beta = (sqrt(c*c + (b-a).squaredNorm()*(radius*radius-a.squaredNorm()))-c)
                    /(b-a).squaredNorm();

            dog_leg = alpha * stepest_descent + beta * (gauss_newton - alpha * stepest_descent);

        }

        cout << "dog-leg: " << endl << dog_leg << endl;

        if(dog_leg.norm() <= eps2 *(params.norm() + eps2))
        {
            cout << "stop because change in x is small" << endl;
            break;
        }

        VectorXd new_params(params.rows());
        new_params = params + dog_leg;

        cout << "new parameter is: " << endl << new_params << endl;

        //compute f(x)
        obj = objF(input,output,params);
        //compute f(x_new)
        VectorXd obj_new = objF(input,output,new_params);

        //compute delta F = F(x) - F(x_new)
        double deltaF = Func(obj) - Func(obj_new);

        //compute delat L =L(0)-L(dog_leg)
        double deltaL = ;
        if(gauss_newton.norm() <= radius)
            deltaL = Func(obj);
        else if(alpha * stepest_descent.norm() >= radius)
            deltaL = radius*(*alpha*gradient.norm() - radius)/(*alpha);
        else
        {
            VectorXd a = alpha * stepest_descent;
            VectorXd b = gauss_newton;
            double c = a.transpose() * (b - a);
            beta = (sqrt(c*c + (b-a).squaredNorm()*(radius*radius-a.squaredNorm()))-c)
                    /(b-a).squaredNorm();

            deltaL = alpha*(-beta)*(-beta)*gradient.squaredNorm()/ + beta*(-beta)*Func(obj);

        }

        double roi = deltaF / deltaL;
        if(roi > )
        {
            params = new_params;
        }
        if(roi > )
        {
            radius = max(radius,  * dog_leg.norm());
        }
        else if(roi < )
        {
            radius = radius / ;
            if(radius <= eps2*(params.norm()+eps2))
            {
                cout << "trust region radius is too small." << endl;
                break;
            }
        }

        cout << "roi: " << roi << " dog-leg norm: " << dog_leg.norm() << endl;
        cout << "radius: " << radius << endl;

        iterCnt++;
        cout << "Iterator " << iterCnt << " times" << endl << endl;
    }
}
           

main()

#include <eigen3/Eigen/Dense>
#include <eigen3/Eigen/Sparse>
#include <iostream>
#include <iomanip>
#include <math.h>

using namespace std;
using namespace Eigen;

const double DERIV_STEP = ;
const int MAX_ITER = ;

#define max(a,b) (((a)>(b))?(a):(b))

int main(int argc, char* argv[])
{
    // obj = A * sin(Bx) + C * cos(D*x) - F
    //there are 4 parameter: A, B, C, D.
    int num_params = ;

    //generate random data using these parameter
    int total_data = ;

    VectorXd input(total_data);
    VectorXd output(total_data);

    double A = , B= , C = , D = ;
    //load observation data
    for (int i = ; i < total_data; i++)
    {
        //generate a random variable [-10 10]
        double x =  * ((random() % ) / ) - ;
        double deltaY =  * (random() % ) /;
        double y = A*sin(B*x)+C*cos(D*x) + deltaY;

        input(i) = x;
        output(i) = y;
    }

    //gauss the parameters
    VectorXd params_gaussNewton(num_params);
    //init gauss
    params_gaussNewton << , , , ;

    VectorXd params_levenMar = params_gaussNewton;
    VectorXd params_dogLeg   = params_gaussNewton;

    gaussNewton(input, output, params_gaussNewton);
    levenMar(input, output, params_levenMar);
    dogLeg(input, output, params_dogLeg);

    cout << "gauss newton parameter: " << endl << params_gaussNewton << endl << endl << endl;
    cout << "Levenberg-Marquardt parameter: " << endl << params_levenMar << endl << endl << endl;
    cout << "dog-leg parameter: " << endl << params_dogLeg << endl << endl << endl;
}
           
非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

通常对于GaussNewton、LM、Dog-Leg,如果初始化的参数离真实值较近时,这三种方法都能收敛到真实值,而像例子中初始化参数 [1.6,1.4,6.2,1.7]T 与真实参数 [5,1,10,2]T 差距较大时,最后收敛的结果与真实值有一定的偏差。因为最小二乘法依赖于初始化参数,最后收敛的只能保证是一个极值点,但是不能保证是全局最优点,图中可以看到LM、Dog-Leg收敛的结果明显优于GaussNewton。

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

三种方法收敛过程中F值变化,可以看到LM、Dog-Leg收敛的结果明显优于GaussNewton。GaussNewton收敛过程中出现明显来回振荡,Dog-Leg最为平稳,LM收敛过程中出现三个阶段。

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

阻尼最小二乘法收敛过程中, F、∥g∥、u 的变化,可以看到在前5次迭代过程中,基本上GaussNewton方向占主导,但是 F 却出现略微增大情况,ρ<0二阶近似较差,导致阻尼系数迅速增大,纠正步进方向为最快下降法方向。

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

Dog-Leg收敛过程中trust region半径在不断改变,直到最后收敛后趋近于0。可以看到 radius 随着 ρ 增大而增大,而当 ρ 趋近于0时 radius 也收敛到0。

总结以上:

最小二乘法优化后结果依赖于初始值的选取,LM、Dog-Leg收敛结果明显好于GaussNewton。LM、Dog-Leg通常能够达到同样的收敛精度,综合来看Dog-Leg略优于LM。

继续阅读