天天看点

[tc13008]Egalitarianism2

考虑对于$n-1$个数$a_{i}$,函数$f(x)=\frac{\sum_{i=1}^{n-1}(x-a_{i})^{2}}{n-1}$的最小值恰在$x=\frac{\sum_{i=1}^{n-1}a_{i}}{n-1}$取到(根据二次函数显然),因此题意可以理解为任选实数$b$并最小化$\frac{\sum_{i=1}^{n-1}(b-a_{i})^{2}}{n-1}$(本来要求$b$为平均值)

可以暴力枚举$b$并将边权从$d$变为$(b-d)^{2}$求最小生成树,但由于$b$为实数,并不能直接枚举

(为了方便,以下约定两条边边权若相同,编号小的更小)

对于最小生成树而言,所选的边事实上仅取决于边的大小关系,考虑两条边$i$和$j$(其中$i<j$)满足$i$在$j$前面当且仅当$x\le \lfloor\frac{w_{i}+w_{j}}{2}\rfloor$,以此法即产生了$o(n^{4})$个区间,每一个区间内大小关系都相同

(每一段都是左端点为圆括号,右端点为中括号)

对于每一段,以$b$作为参数来表示边权,比较时使用区间内任意数字即可,最后即求一个二次函数区间(其实也可以忽略区间限制)最小值,即可做到$o(n^{6})$的复杂度,可以通过

(以下可能有一些口胡)

更进一步的,考虑每一次权值变化即将两条边优先级交换,且交换的两边优先级相邻(不妨假设为两边为$i$和$j$,其中交换前$i$优先级较大),此时不难证明——

如果修改最小生成树,则必然是$i$本来在最小生成树中被删除,$j$本来不在最小生成树中被加入(其余边不修改)

(证明考虑kruskal贪心的过程并分类讨论即可)

因此只需要判定能否替换即可,用按秩合并并查集维护,复杂度为$o(n^{4}\log n)$

[tc13008]Egalitarianism2
[tc13008]Egalitarianism2

view code