天天看点

循环缓冲区

循环缓冲区在一些竞争问题上提供了一种免锁的机制,免锁的前提是,生产者和消费

都只有一个的情况下,否则也要加锁。下面就内核中提取出来,而经过修改后的fifo进

行简要的分析。

先看其只要数据结构:

struct my_fifo {

    unsignedchar *buffer;/*the buffer holding the data*/

    unsignedint size;    /*the size of theallocated buffer*/

    unsignedint in;      /*data is addedat offset (in % size)*/

    unsignedint out;     /*data isextracted from off. (out % size)*/

};

也不用多说,一看就明白。size, in, out 都设成无符号型的,因为都不存在负值的情型。

/*

form kernel/kfifo.c

*/

#include<stdio.h>

#include<stdlib.h>

#include<fifo.h>

#define min(a,b) ((a) < (b) ? (a):(b))

my_fifo_init

struct my_fifo *my_fifo_init(unsignedchar*buffer,

unsignedint size)

{

    structmy_fifo *fifo;

    fifo = malloc(sizeof(structmy_fifo));

    if(!fifo)

        returnNULL;

    fifo->buffer = buffer;

    fifo->size = size;

    fifo->in = fifo->out = 0;

    returnfifo;

}

这个初始化fifo结构的函数一般也不会在应用层里进行调用,而是被下面的fifo_alloc调用。依我的观点来看,这两个函数合成一个函数会更加的清晰,但是这一情况只针对buffer是系统开辟的空间,如果buffer的空间是由其它的函数来提供,就只能用上面的这个函数。

my_fifo_alloc

struct my_fifo *my_fifo_alloc(unsignedintsize)

    unsignedchar *buffer;

    structmy_fifo *ret;

    /*

* round up to the next power of 2, since our 'let theindices

* wrap' tachnique works only in this case.

    buffer = malloc(size);

    if(!buffer)

    ret = my_fifo_init(buffer, size);

    if(ret ==

NULL)

        free(buffer);

    returnret;

* my_fifo_free

void my_fifo_free(struct my_fifo *fifo)

    free(fifo->buffer);

    free(fifo);

这两个函数也不作过多的分析,都很清晰。

my_fifo_put()

unsigned

intmy_fifo_put(struct my_fifo *fifo,

             unsignedchar *buffer,unsigned

intlen)

    unsignedint l;

    len = min(len, fifo->size -fifo->in + fifo->out);/*可能是缓冲区的空闲长度或者要写长度*/

    /*first putthe data starting from fifo->in to buffer end*/

    l = min(len, fifo->size -(fifo->in & (fifo->size -

1)));

   memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);

    /*then putthe rest (if any) at the beginning of the buffer*/

    memcpy(fifo->buffer, buffer + l,len - l);

    fifo->in += len;

    returnlen;

my_fifo_get

intmy_fifo_get(struct my_fifo *fifo,

    len = min(len, fifo->in -fifo->out); /*可读数据*/

    /*first getthe data from fifo->out until the end of the buffer*/

    l = min(len, fifo->size -(fifo->out & (fifo->size -

    memcpy(buffer, fifo->buffer +(fifo->out & (fifo->size -

1)),l);

    /*then getthe rest (if any) from the beginning of the buffer*/

    memcpy(buffer + l, fifo->buffer,len - l);

    fifo->out += len;

}这两个读写结构才是循环缓冲区的重点。在fifo结构中,size是缓冲区的大小,是由用户自己定义的,但是在这个设计当中要求它的大小必须是2的幂次。当in==out时,表明缓冲区为空的,当(in-out)==size    时,说明缓冲区已满。我们看下具体实现,在86行处如果size-in+out ==0,也即获得的len值会0,而没有数据写入到缓冲区中。所以在设计缓冲区的大小的时候要恰当,读出的速度要比定入的速度要快,否则缓冲区满了会使数据丢失,可以通过成功写入的反回值来做判断尝试再次写入.另一种情况则是缓冲区有足够的空间给要写入的数据,但是试想一下,如果空闲的空间在缓冲的首尾两次,这又是如何实现呢?这部分代码实现得非常巧妙。我们看fifo->in

&(fifo->size-1)这个表达式是什么意思呢?我们知道size是2的幂次项,那么它减1即表示其值的二进制所有位都为1,与in相与的最终结果是in%size,比

size要小,所以看in及out的值都是不断地增加,但再相与操作后,它们即是以size为周期的一个循环。89行就是比较要写入的数据应该是多少,如果缓冲区后面的还有足够的空间可写,那么把全部的值写到后面,否则写满后面,再写到前面去93行。读数据也可以作类似的分析,108行表示请求的数据要比缓冲区的数据要大时,只读取缓冲区中可用的数据。

static inlinevoid my_fifo_reset(struct my_fifo *fifo)

static inlineunsignedintmy_fifo_len(struct

my_fifo *fifo)

    returnfifo->in - fifo->out;

在头文件里还有缓冲区置位及返回缓冲区中数据大小两个函数,很简单,不必解释。

继续阅读