天天看点

数据结构思维 第二章 算法分析第二章 算法分析

第二章 算法分析

原文: Chapter 2 Analysis of Algorithms 译者: 飞龙 协议: CC BY-NC-SA 4.0 自豪地采用 谷歌翻译

我们在前面的章节中看到,Java 提供了两种实现

List

的接口,

ArrayList

LinkedList

。对于一些应用,

LinkedList

更快;对于其他应用,

ArrayList

更快。

要确定对于特定的应用,哪一个更好,一种方法是尝试它们,并看看它们需要多长时间。这种称为“性能分析”的方法有一些问题:

  • 在比较算法之前,你必须实现这两个算法。
  • 结果可能取决于你使用什么样的计算机。一种算法可能在一台机器上更好;另一个可能在不同的机器上更好。
  • 结果可能取决于问题规模或作为输入提供的数据。

我们可以使用算法分析来解决这些问题中的一些问题。当它有效时,算法分析使我们可以比较算法而不必实现它们。但是我们必须做出一些假设:

  • 为了避免处理计算机硬件的细节,我们通常会识别构成算法的基本操作,如加法,乘法和数字比较,并计算每个算法所需的操作次数。
  • 为了避免处理输入数据的细节,最好的选择是分析我们预期输入的平均性能。如果不可能,一个常见的选择是分析最坏的情况。
  • 最后,我们必须处理一个可能性,一种算法最适合小问题,另一个算法适用于较大的问题。在这种情况下,我们通常专注于较大的问题,因为小问题的差异可能并不重要,但对于大问题,差异可能是巨大的。

这种分析适用于简单的算法分类。例如,如果我们知道算法

A

的运行时间通常与输入规模成正比,即

n

,并且算法

B

通常与

n ** 2

成比例,我们预计

A

B

更快,至少对于

n

的较大值。

大多数简单的算法只能分为几类。

  • 常数时间:如果运行时间不依赖于输入的大小,算法是“常数时间”。例如,如果你有一个

    n

    个元素的数组,并且使用下标运算符(

    []

    )来访问其中一个元素,则此操作将执行相同数量的操作,而不管数组有多大。
  • 线性:如果运行时间与输入的大小成正比,则算法为“线性”的。例如,如果你计算数组的和,则必须访问

    n

    个元素并执行

    n - 1

    个添加。操作的总数(元素访问和加法)为

    2 * n -1

    ,与

    n

    成正比。
  • 平方:如果运行时间与

    n ** 2

    成正比,算法是“平方”的。例如,假设你要检查列表中的任何元素是否多次出现。一个简单的算法是将每个元素与其他元素进行比较。如果有

    n

    个元素,并且每个元素与

    n - 1

    个其他元素进行比较,则比较的总数是

    n ** 2 - n

    ,随着

    n

    增长它与

    n ** 2

2.1 选择排序

例如,这是一个简单算法的实现,叫做“选择排序”(请见

http://thinkdast.com/selectsort

):

public class SelectionSort {

    /**
     * Swaps the elements at indexes i and j.
     */
    public static void swapElements(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

    /**
     * Finds the index of the lowest value
     * starting from the index at start (inclusive)
     * and going to the end of the array.
     */
    public static int indexLowest(int[] array, int start) {
        int lowIndex = start;
        for (int i = start; i < array.length; i++) {
            if (array[i] < array[lowIndex]) {
                lowIndex = i;
            }
        }
        return lowIndex;
    }

    /**
     * Sorts the elements (in place) using selection sort.
     */
    public static void selectionSort(int[] array) {
        for (int i = 0; i < array.length; i++) {
            int j = indexLowest(array, i);
            swapElements(array, i, j);
        }
    }
}           

第一个方法

swapElements

交换数组的两个元素。元素的是常数时间的操作,因为如果我们知道元素的大小和第一个元素的位置,我们可以使用一个乘法和一个加法来计算任何其他元素的位置,这都是常数时间的操作。由于

swapElements

中的一切都是恒定的时间,整个方法是恒定的时间。

第二个方法

indexLowest

从给定的索引

start

开始,找到数组中最小元素的索引。每次遍历循环的时候,它访问数组的两个元素并执行一次比较。由于这些都是常数时间的操作,因此我们计算什么并不重要。为了保持简单,我们来计算一下比较的数量。

  • 如果

    start

    为 ,则

    indexLowest

    遍历整个数组,并且比较的总数是数组的长度,我称之为

    n

  • start

    1

    ,则比较数为

    n - 1

  • 一般情况下,比较的次数是

    n - start

    ,因此

    indexLowest

    是线性的。

第三个方法

selectionSort

对数组进行排序。它从

循环到

n - 1

,所以循环执行了

n

次。每次调用

indexLowest

然后执行一个常数时间的操作

swapElements

第一次

indexLowest

被调用的时候,它进行

n

次比较。第二次,它进行

n - 1

比较,依此类推。比较的总数是

n + n−1 + n−2 + ... + 1 + 0            

这个数列的和是

n(n+1)/2

,它(近似)与

n ** 2

成正比;这意味着

selectionSort

是平方的。

为了得到同样的结果,我们可以将

indexLowest

看作一个嵌套循环。每次调用

indexLowest

时,操作次数与

n

成正比。我们调用它

n

次,所以操作的总数与

n ** 2

2.2 大 O 表示法

所有常数时间算法属于称为

O(1)

的集合。所以,说一个算法是常数时间的另一个方法就是,说它是

O(1)

的。与之类似,所有线性算法属于

O(n)

,所有二次算法都属于

O(n ** 2)

。这种分类算法的方式被称为“大 O 表示法”。

注意:我提供了一个大 O 符号的非专业定义。更多的数学处理请参见

http://thinkdast.com/bigo

这个符号提供了一个方便的方式,来编写通用的规则,关于算法在我们构造它们时的行为。例如,如果你执行线性时间算法,之后是常量算法,则总运行时间是线性的。

表示“是…的成员”:

f ∈ O(n) && g ∈ O(1) => f + g ∈ O(n)           

如果执行两个线性运算,则总数仍然是线性的:

f ∈ O(n) && g ∈ O(n) => f + g ∈ O(n)           

事实上,如果你执行任何次数的线性运算,

k

,总数就是线性的,只要

k

是不依赖于

n

的常数。

f ∈ O(n) && k 是常数 => kf ∈ O(n)           

但是,如果执行

n

次线性运算,则结果为平方:

f ∈ O(n) => nf ∈ O(n ** 2)           

一般来说,我们只关心

n

的最大指数。所以如果操作总数为

2 * n + 1

,则属于

O(n)

。主要常数

2

和附加项

1

对于这种分析并不重要。与之类似,

n ** 2 + 100 * n + 1000

O(n ** 2)

的。不要被大的数值分心!

“增长级别”是同一概念的另一个名称。增长级别是一组算法,其运行时间在同一个大 O 分类中;例如,所有线性算法都属于相同的增长级别,因为它们的运行时间为

O(n)

在这种情况下,“级别”是一个团体,像圆桌骑士的阶级,这是一群骑士,而不是一种排队方式。因此,你可以将线性算法的阶级设想为一组勇敢,仗义,特别有效的算法。

2.3 练习 2

本章的练习是实现一个

List

,使用 Java 数组来存储元素。

在本书的代码库(请参阅 0.1 节)中,你将找到你需要的源文件:

  • MyArrayList.java

    包含

    List

    接口的部分实现。其中四个方法是不完整的;你的工作是填充他们。
  • MyArrayListTest.java

    包含 JUnit 测试,可用于检查你的工作。

你还会发现 Ant 构建文件

build.xml

。你应该可以从代码目录运行

ant MyArrayList

,来运行

MyArrayList.java

,其中包含一些简单的测试。或者你可以运行

ant MyArrayListTest

运行 JUnit 测试。

当你运行测试时,其中几个应该失败。如果你检查源代码,你会发现四条 TODO 注释,表示你应该填充的方法。

在开始填充缺少的方法之前,让我们来看看一些代码。这里是类定义,实例变量和构造函数。

public class MyArrayList<E> implements List<E> {
    int size;                    // keeps track of the number of elements
    private E[] array;           // stores the elements

    public MyArrayList() {
        array = (E[]) new Object[10];
        size = 0;
    }
}           

正如注释所述,

size

跟踪

MyArrayList

中由多少元素,而且

array

是实际包含的元素的数组。

构造函数创建一个 10 个元素的数组,这些元素最初为

null

,并且

size

设为

。·大多数时候,数组的长度大于

size

,所以数组中由未使用的槽。

Java 的一个细节:你不能使用类型参数实例化数组;例如,这样不起作用:

array = new E [10];           

要解决此限制,你必须实例化一个

Object

数组,然后进行类型转换。你可以在

http://thinkdast.com/generics

上阅读此问题的更多信息。

接下来,我们将介绍添加元素到列表的方法:

public boolean add(E element) {
    if (size >= array.length) {
        // make a bigger array and copy over the elements
        E[] bigger = (E[]) new Object[array.length * 2];
        System.arraycopy(array, 0, bigger, 0, array.length);
        array = bigger;
    } 
    array[size] = element;
    size++;
    return true;
}           

如果数组中没有未使用的空间,我们必须创建一个更大的数组,并复制这些元素。然后我们可以将元素存储在数组中并递增

size

为什么这个方法返回一个布尔值,这可能不明显,因为它似乎总是返回

true

。像之前一样,你可以在文档中找到答案:

http://thinkdast.com/colladd

。如何分析这个方法的性能也不明显。在正常情况下,它是常数时间的,但如果我们必须调整数组的大小,它是线性的。我将在 3.2 节中介绍如何处理这个问题。

最后,让我们来看看

get

;之后你可以开始做这个练习了。

public T get(int index) {
    if (index < 0 || index >= size) {
        throw new IndexOutOfBoundsException();
    }
    return array[index];
}           

其实

get

很简单:如果索引超出范围,它会抛出异常; 否则读取并返回数组的元素。注意,它检查索引是否小于

size

,大于等于

array.length

,所以它不能访问数组的未使用的元素。

MyArrayList.java

中,你会找到

set

的桩,像这样:

public T set(int index, T element) {
    // TODO: fill in this method.
    return null;
}           

阅读

set

的文档,在

http://thinkdast.com/listset

,然后填充此方法的主体。如果再运行

MyArrayListTest

testSet

应该通过。

提示:尽量避免重复索引检查的代码。

你的下一个任务是填充

indexOf

。像往常一样,你应该阅读

http://thinkdast.com/listindof

上的文档,以便你知道应该做什么。特别要注意它应该如何处理

null

我提供了一个辅助方法

equals

,它将数组中的元素与目标值进行比较,如果它们相等,返回

true

(并且正确处理

null

),则 返回。请注意,此方法是私有的,因为它仅在此类中使用;它不是

List

接口的一部分。

完成后,

再次运行MyArrayListTest

testIndexOf

,以及依赖于它的其他测试现在应该通过。

只剩下两个方法了,你需要完成这个练习。下一个是

add

的重载版本,它接受下标并将新值存储在给定的下标处,如果需要,移动其他元素来腾出空间。

再次阅读

http://thinkdast.com/listadd

上的文档,编写一个实现,并运行测试进行确认。

提示:避免重复扩充数组的代码。

最后一个:填充

remove

的主体。文档位于

http://thinkdast.com/listrem

。当你完成它时,所有的测试都应该通过。

一旦你的实现能够工作,将其与我的比较,你可以在

http://thinkdast.com/myarraylist

上找到它。