天天看点

大物下学期期末复习笔记

文章目录

    • Ch 21 Charge(电荷)
    • Ch 22 Electric Fields(电场)
    • Ch 23 GAUSS'LAW(高斯定律)
    • Ch 24 ELECTRIC POTENTIAL(电势)
    • Ch 25 CAPACITANCE(电容)
    • CH26 CURRENT AND RESISTANCE(电流和电阻)
    • Ch 27 (电路)
    • Ch28 MAFNETIC FIELDS(磁场)
    • ch 29 MAGNETIC FIELDS DUE TO CURRENTS(电流的磁场)
    • Ch30 Induction and inductance(电感和感应)
    • Ch32 MAXWELL'S EQUATIONS (麦克斯韦方程)
    • Ch 33 Electromagenetic waves(电磁波)
    • Ch 37 Relativity (相对论)
    • Ch 38 Photons and Matter Wave(光子和物质波)
    • Ch 39 再论物质波(More about matter waves)

Ch 21 Charge(电荷)

库伦定律(Coulomb’s Law)

F = 1 4 π ε 0 q 1 q 2 r 2 F = \frac{1}{4\pi \varepsilon_0}\frac{q_1q_2}{r^2} F=4πε0​1​r2q1​q2​​

重要参数:

  • k = 9.0 × 1 0 9 N . m 2 / C 2 \times10^9N.m^2/C^2 ×109N.m2/C2
  • ε 0 = 8.85 × 1 0 − 12 C 2 / N ⋅ m 2 \varepsilon_0 = 8.85\times 10^{-12}C^2/N\cdot m^2 ε0​=8.85×10−12C2/N⋅m2

电荷是量子化的, e = 1.602 × 1 0 − 19 C e = 1.602\times 10^{-19}C e=1.602×10−19C

Ch 22 Electric Fields(电场)

电场的定义式:

E ⃗ = F ⃗ q 0 \vec{E} = \frac{\vec{F}}{q_0} E

=q0​F

点电荷形成的电场

E = 1 4 π ε 0 q r 2 E = \frac{1}{4\pi \varepsilon_0}\frac{q}{r^2} E=4πε0​1​r2q​

微元法

d q = λ d s ∴ E = 1 4 π ε 0 λ d s r 2 dq = \lambda ds\\ \therefore E =\frac{1}{4\pi \varepsilon_0}\frac{\lambda ds}{r^2} dq=λds∴E=4πε0​1​r2λds​

电偶极子形成的电场

​ 这里做了近似,要求z远大于d

E = 1 2 π ε 0 p z 3 E = \frac{1}{2\pi\varepsilon_0}\frac{p}{z^3} E=2πε0​1​z3p​

正电荷环形成的电场

​ 圆环半径为R, 点距离圆环圆心的高度是z

E = q z 4 π ε 0 ( z 2 + R 2 ) 3 2 E = \frac{qz}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}} E=4πε0​(z2+R2)23​qz​

如果z >> R,那么上式可以简化为

E = q z 4 π ε 0 z 3 E = \frac{qz}{4\pi\varepsilon_0z^3} E=4πε0​z3qz​

带电圆盘引起的电场

​ 其中 σ \sigma σ是单位面积的电荷量(即面电荷密度)

E = σ 2 ε 0 ( 1 − z z 2 + R 2 ) E = \frac{\sigma}{2\varepsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}}) E=2ε0​σ​(1−z2+R2

​z​)

当R-> ∞ ∞ ∞时, E = σ 2 ε \displaystyle E = \frac{\sigma}{2\varepsilon} E=2εσ​

偶极子在电场中的特性

​ 对偶极子的力矩

τ ⃗ = p ⃗ × E ⃗ \vec{\tau} = \vec{p}\times \vec{E} τ

=p

​×E

​ 势能

U = − p ⃗ ⋅ E ⃗ U = -\vec{p}\cdot\vec{E} U=−p

​⋅E

重要名词

  • electric dipole 电偶极子
  • dipole axis 电偶极子轴
  • electric dipole moment 电偶极距 p = q d p = qd p=qd , 其中d是两个电偶极子的距离
  • charge density 电荷密度

Ch 23 GAUSS’LAW(高斯定律)

Flux

ϕ = ∮ E ⃗ ⋅ d A ⃗ \phi = \oint \vec{E}\cdot d\vec{A} ϕ=∮E

⋅dA

Guass’s Law

ε 0 ∮ E ⃗ ⋅ d A ⃗ = q e n c \varepsilon_0 \oint \vec{E}\cdot d\vec{A} = q_{enc} ε0​∮E

⋅dA

=qenc​

带电独立导体的特性

​ 过量的电荷放置在孤立导体上,那么电荷将全部移到导体的表面,导体体内不会有过量的电荷存在,也就是导体处于静电平衡状态中。(金属内部电场为0)

柱面对称(Cylindrical Symmetry)

​ 根据高斯定律,我们可以得到

ε 0 E ( 2 π r h ) = λ h \varepsilon_0 E(2\pi rh) = \lambda h ε0​E(2πrh)=λh

​ 所以我们得到

E = λ 2 π ε 0 r E = \frac{\lambda}{2\pi\varepsilon_0r} E=2πε0​rλ​

一个大的平面上

E = σ ε 0 E = \frac{\sigma}{\varepsilon_0} E=ε0​σ​

绝缘薄片(Nonconducting Sheet)

ε 0 ( E A + E A ) = σ A \varepsilon_0(EA+EA) = \sigma A ε0​(EA+EA)=σA

两块导体平板

​ 这种题目画图示意即可

E = 2 σ 1 ε 0 = σ ε 0 E=\frac{2\sigma_1}{\varepsilon_0}=\frac{\sigma}{\varepsilon_0} E=ε0​2σ1​​=ε0​σ​

球面对称(Spherical Symmetry)

​ 和高中所学一致

Ch 24 ELECTRIC POTENTIAL(电势)

​ 由电偶极子引起的电势(Potential due to an Electric Dipole)

​ 但满足r>>d,有

r ( + ) − r ( − ) ≈ d c o s θ r ( + ) − r ( − ) = r 2 r_{(+)}-r_{(-)} \approx dcos\theta \\r_{(+)}-r_{(-)} = r^2 r(+)​−r(−)​≈dcosθr(+)​−r(−)​=r2

所以我们得到

V = q 4 π ε o d c o s θ r 2 ∴ V = 1 4 π ε o p c o s θ r 2 V = \frac{q}{4\pi\varepsilon_o}\frac{dcos\theta}{r^2}\\\therefore V = \frac{1}{4\pi\varepsilon_o}\frac{pcos\theta}{r^2} V=4πεo​q​r2dcosθ​∴V=4πεo​1​r2pcosθ​

p的方向是从负电荷指向正电荷的

由连续电荷分布引起的电势(Potential Due to a Continuous Charge Distribution)

V = 1 4 π ε 0 ∫ d q r V = \frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε0​1​∫rdq​

电荷线

​ length L,uniform linear density λ \lambda λ,p距离电荷线的距离是d

KaTeX parse error: Expected 'EOF', got '&' at position 4: V &̲= \frac{1}{4\pi…

带电圆盘

​ 微元法,其中p距离圆盘的高度为r

d q = σ ( 2 π R ′ ) ( d R ′ ) ∴ d V = 1 4 π ε 0 σ ( 2 π R ′ ) ( d R ′ ) z 2 + R ′ 2 dq = \sigma (2\pi R')(dR')\\\therefore dV = \frac{1}{4\pi\varepsilon_0}\frac{\sigma (2\pi R')(dR')}{\sqrt{z^2+R'^2}} dq=σ(2πR′)(dR′)∴dV=4πε0​1​z2+R′2

​σ(2πR′)(dR′)​

计算电场

E = − Δ V Δ s E = -\frac{\Delta V}{\Delta s} E=−ΔsΔV​

​ 即沿着x,y,z方向求导

电势能

​ 静止点电荷系统的电势能,等于把各点电荷从无穷远处移入组成该系统时外力所做的功

孤立带电导体的电势

​ 壳内所有点的电势具有和表面电势相同的值

Ch 25 CAPACITANCE(电容)

计算电场(Electric Field)

​ 因为 E ⃗ \vec{E} E

和 A ⃗ \vec{A} A

总是平行,根据高斯定律

q = ε 0 E A q = \varepsilon_0EA q=ε0​EA

计算电势差(Potential difference)

V = ∫ − + E d s V = \int_-^+Eds V=∫−+​Eds

平行板电容器(A Parallel-Plate Capacitor)

​ 电势差为

V = E d e V = Ede V=Ede

​ 根据高斯定律,我们得到

C = ε 0 A d C= \frac{\varepsilon_0A}{d} C=dε0​A​

圆柱形电容器(A Cyclindritor)

​ 根据高斯定律

q = ε 0 E ( 2 π r L ) ∴ V = ∫ − + E d s = q 2 π ε 0 L l n ( b a ) ∴ C = q / V = 2 π ε 0 L l n ( b / a ) q = \varepsilon_0 E(2\pi rL)\\\therefore V= \int_-^+Eds = \frac{q}{2\pi \varepsilon_0 L}ln(\frac{b}{a})\\\therefore C = q/V = 2\pi\varepsilon_0 \frac{L}{ln(b/a)} q=ε0​E(2πrL)∴V=∫−+​Eds=2πε0​Lq​ln(ab​)∴C=q/V=2πε0​ln(b/a)L​

球形电容器

​ 方法是圆柱形电容器是一样的,只是高斯公式的A改变而引起的其他数值的变化而已。

q = ε 0 E ( 4 π r 2 ) q = \varepsilon_0E(4\pi r^2) q=ε0​E(4πr2)

​ 最后的表达式为:

C = 4 π ε 0 a b b − a C = 4\pi \varepsilon_0 \frac{ab}{b-a} C=4πε0​b−aab​

孤立的球体

​ 我们假定另一个极板是在无穷远处,即为b-> ∞ \infin ∞,那么我们可以把球形电容器的公式化为:

C = 4 π ε 0 R C = 4\pi \varepsilon_0 R C=4πε0​R

电容器储存的能量

U = q 2 2 C = 1 2 C V 2 U = \frac{q^2}{2C} = \frac{1}{2}C V^2 U=2Cq2​=21​CV2

能量密度(Energy Density)

​ 指的是单位体积的电势能

u = U A d = 1 2 ε 0 E 2 u = \frac{U}{Ad} = \frac{1}{2}\varepsilon_0E^2 u=AdU​=21​ε0​E2

有介电质(Dielectric)的电容器

​ k表示绝缘材料的介电常量,公式中将 ε 0 \varepsilon_0 ε0​改为 k ε 0 k\varepsilon_0 kε0​即可。介电质的作用是削弱电场

介电质和高斯定律(Dielectrics and Gauss’s Law)

​ 由高斯定律得

​ 注意这里的q是自由电荷

E = q − q ′ ε 0 A   a n d   E = E 0 k = q k ε 0 A ∴ q − q ′ = q k E = \frac{q-q'}{\varepsilon_0A}\ and\ E = \frac{E_0}{k} = \frac{q}{k\varepsilon_0A}\\ \therefore q-q' = \frac{q}{k} E=ε0​Aq−q′​ and E=kE0​​=kε0​Aq​∴q−q′=kq​

CH26 CURRENT AND RESISTANCE(电流和电阻)

电流的单位 1A 或者 1C/s

电流密度(Current Density)

J = i A J = \frac{i}{A} J=Ai​

漂移速率(Drift Speed)

​ n表示单位体积的电荷量, ne是载流子电荷密度,

J ⃗ = ( n e ) v d ⃗ \vec{J} = (ne)\vec{v_d} J

=(ne)vd​

电阻率(Resistivity)的定义式

ρ = E J \rho = \frac{E}{J} ρ=JE​

电阻定律

R = ρ L A R = \rho \frac{L}{A} R=ρAL​

电阻率的温度系数

ρ − ρ 0 = ρ 0 α ( T − T 0 ) \rho - \rho_0 = \rho_0 \alpha(T-T_0) ρ−ρ0​=ρ0​α(T−T0​)

微观欧姆定律(Microscopic View of Ohn’s Law)

​ τ \tau τ表示两次连续碰撞的平均时间

ρ = m e 2 n τ \rho = \frac{m}{e^2n\tau} ρ=e2nτm​

Ch 27 (电路)

(略)

Ch28 MAFNETIC FIELDS(磁场)

The Definition of B ⃗ \vec{B} B

F B ⃗ = q v B s i n ϕ \vec{F_B} = qvBsin\phi FB​

​=qvBsinϕ

单位

1 T = 1 N A ⋅ m 1T = 1\frac{N}{A\cdot m} 1T=1A⋅mN​

作用在电流回路上的力矩(Torque on a Current Loop)

τ = ( N i A ) B s i n θ \tau = (NiA)Bsin\theta τ=(NiA)Bsinθ

磁偶极矩(The Magnetic Dipole Moment)

​ 我们取磁偶极矩的方向为线圈平面法向量的方向,

μ = N i A \mu = NiA μ=NiA

​ 所以我们可以力矩改写为

τ ⃗ = μ ⃗ × B ⃗ \vec\tau = \vec\mu\times\vec B τ

​×B

我们发现力矩都等于对应的偶极矩乘以场矢量

类别与电场的电势能 U ( θ ) = − p ⃗ ⋅ E ⃗ U(\theta) = -\vec p \cdot \vec E U(θ)=−p

​⋅E

,磁势能为

U ( θ ) = − u ⃗ ⋅ B ⃗ U(\theta) = -\vec u\cdot \vec{B} U(θ)=−u

⋅B

ch 29 MAGNETIC FIELDS DUE TO CURRENTS(电流的磁场)

​ Law of Biot and Savart(毕奥-萨伐尔定律)

d B ⃗ = μ 0 4 π i d s ⃗ × r ⃗ r 3 d\vec B = \frac{\mu_0}{4\pi}\frac{id\vec s\times\vec r}{r^3} dB

=4πμ0​​r3ids

×r

​ 重要常量 μ = 1.26 × 1 0 − 6 T ⋅ m / A \mu = 1.26\times10^{-6}T \cdot m/A μ=1.26×10−6T⋅m/A

长直导线产生的磁场

B = μ 0 i 2 π R B = \frac{\mu_0 i }{2\pi R} B=2πRμ0​i​

​ 半无限长的导线自然是一半

圆弧型导线电流的磁场

B = μ 0 i ϕ 4 π R B = \frac{\mu_0 i \phi}{4\pi R} B=4πRμ0​iϕ​

两平行电流的之间的力

F b a = μ 0 L i a i b 2 π d F_{ba} = \frac{\mu_0Li_ai_b}{2\pi d} Fba​=2πdμ0​Lia​ib​​

同向电流相互吸引,反向电流相互排斥

安培定律

∮ B ⃗ ⋅ d s ⃗ = μ 0 i e n c \oint \vec B \cdot d\vec s = \mu_0 i_{enc} ∮B

⋅ds

=μ0​ienc​

​ 只需要考虑回路内的电流即可

长直导线外部的磁场

B ( 2 π r ) = μ 0 i B(2\pi r) = \mu_0 i B(2πr)=μ0​i

长直导线内部的磁场

B ( 2 π r ) = μ 0 i r 2 R 2 B(2\pi r) = \mu_0i\frac{r^2}{R^2} B(2πr)=μ0​iR2r2​

螺线管的磁场(Solenoids and Toroids)

​ 线圈内部的磁场相当强并且在线圈的横截面上是均匀的,外部很弱(接近于0)

​ n表示螺线管单位长度的匝数,则

i e n c = i ( n h ) ∴ B h = μ 0 i n h i e .   B = μ 0 i n i_{enc} = i(nh)\\ \therefore Bh = \mu_0 inh\quad ie.\ B =\mu_0 in ienc​=i(nh)∴Bh=μ0​inhie. B=μ0​in

螺绕环的磁场

B ( 2 π r ) = μ 0 i N B(2\pi r) = \mu_0iN B(2πr)=μ0​iN

作为磁偶极子的载流线圈(Current-Carrying Coil as a Magnetic Dipole)

B ⃗ ( z ) = μ 0 2 π μ ⃗ z 3 \vec{B}(z) = \frac{\mu_0}{2\pi}\frac{\vec\mu}{z^3} B

(z)=2πμ0​​z3μ

​​

Ch30 Induction and inductance(电感和感应)

法拉第电磁感应定律(Faraday‘s Law of Induction)

magnetic flux(磁通量)

ϕ B = ∫ B ⃗ ⋅ d A ⃗ \phi_B = \int \vec B\cdot d\vec A ϕB​=∫B

⋅dA

​ 单位$Wb =T\cdot m^2 $

电动势(induced emf)

ε = − N d ϕ B d t \varepsilon = -N\frac{d\phi_B}{dt} ε=−NdtdϕB​​

楞次定律(Lenz’s Law)

感生电场(Induced Electric Fields)

​ 变化的磁场产生电场

​ 感生电动势是 E ⃗ ⋅ d s ⃗ \vec E\cdot d\vec s E

⋅ds

沿着闭合路径的总和

ε = ∮ E ⃗ ⋅ d s ⃗ \varepsilon = \oint \vec E\cdot d\vec s ε=∮E

⋅ds

​ 结合法拉第定律,我们得到

∮ E ⃗ ⋅ d s ⃗ = − d ϕ B d t \oint \vec E\cdot d\vec s = - \frac{d\phi_B}{dt} ∮E

⋅ds

=−dtdϕB​​

​ 感生电场的电场线形成闭合回路。

​ 电势只对静止电荷产生的电场有意义,对由感应产生的电场无意义

电感器和电感(Inductors and Inductance)

​ 电感的定义式为

L = N ϕ B i L = \frac{N\phi_B}{i} L=iNϕB​​

​ N ϕ B N\phi_B NϕB​称为磁链(magnetic flux linkage)

​ 单位为 H = T ⋅ m 2 / A H = T\cdot m^2/A H=T⋅m2/A

螺线管的电感

L = N ϕ B i = n l ( μ 0 i n ) A i = μ 0 n 2 A L = \frac{N\phi_B}{i}= \frac{nl(\mu_0 i n)A}{i} = \mu_0n^2A L=iNϕB​​=inl(μ0​in)A​=μ0​n2A

自感(Self-induction)

ε 0 = − L d i d t \varepsilon_0 = - L \frac{di}{dt} ε0​=−Ldtdi​

电感储存的磁能

U B = 1 2 L i 2 U_B = \frac{1}{2}Li^2 UB​=21​Li2

磁场的能量密度

u B = U B A l = L i 2 2 A l = 1 2 μ 0 n 2 i 2 = B 2 2 μ 0 u_B = \frac{U_B}{Al} = \frac{Li^2}{2Al} = \frac{1}{2} \mu_0n^2i^2 = \frac{B^2}{2\mu_0} uB​=AlUB​​=2AlLi2​=21​μ0​n2i2=2μ0​B2​

互感

M 21 = N 2 ϕ 21 i 1 ∴ ε 1 = − M d i 1 d t M_{21} = \frac{N_2\phi_{21}}{i_1}\\\therefore \varepsilon_1 = -M\frac{di_1}{dt} M21​=i1​N2​ϕ21​​∴ε1​=−Mdtdi1​​

Ch32 MAXWELL’S EQUATIONS (麦克斯韦方程)

​ 感应磁场(induced magnetic fields)

∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t \oint \vec B\cdot d\vec s = \mu_0 \varepsilon_0 \frac{d\phi_E}{dt} ∮B

⋅ds

=μ0​ε0​dtdϕE​​

​ 感生磁场和感生电场方向相反。

​ 总磁场由一个电流和一个变化的电场共同产生

∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t + μ 0 i e n c \oint \vec B \cdot d\vec s = \mu_0\varepsilon_0 \frac{d\phi_E}{dt}+\mu_0i_{enc} ∮B

⋅ds

=μ0​ε0​dtdϕE​​+μ0​ienc​

​ 位移电流(Displayment Current)

i d = ε 0 d ϕ E d t i_d = \varepsilon_0\frac{d\phi_E}{dt} id​=ε0​dtdϕE​​

​ 那安培-麦克斯韦方程可以改写为:

∮ B ⃗ ⋅ d s ⃗ = μ 0 i d , e n c + μ 0 i e n c \oint \vec B\cdot d\vec s = \mu_0i_{d,enc}+\mu_0i_{enc} ∮B

⋅ds

=μ0​id,enc​+μ0​ienc​

​ 极板充电的实际电流与虚拟电流相等

麦格斯为方程组

Name Equation
Guass’s Law for electricity

∮ E ⃗ ⋅ d A ⃗ = q e n c ε 0 \oint \vec E\cdot d\vec A =\displaystyle \frac{q_{enc}}{\varepsilon_0} ∮E

⋅dA

=ε0​qenc​​

联系静电通量与包围的净电荷
Guass’s Law for magnetism

∮ B ⃗ ⋅ d A ⃗ = 0 \oint \vec B\cdot d\vec A = 0 ∮B

⋅dA

=0

联系净磁通量与包围的磁电荷
Faraday’s law

∮ E ⃗ ⋅ d s ⃗ = − d ϕ B d t \oint \vec E\cdot d\vec s =\displaystyle - \frac{d\phi_B}{dt} ∮E

⋅ds

=−dtdϕB​​

联系感应磁场和变化的磁通量
Ampere-Maxwell law

∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t + μ 0 i e n c \oint \vec B \cdot d\vec s =\displaystyle \mu_0\varepsilon_0 \frac{d\phi_E}{dt}+\mu_0i_{enc} ∮B

⋅ds

=μ0​ε0​dtdϕE​​+μ0​ienc​

联系感应磁场和变化电通量和电流

Ch 33 Electromagenetic waves(电磁波)

​ 电磁场的振幅

E = E m s i n ( k x − ω t ) B = B m s i n ( k x − ω t ) E = E_msin(kx - \omega t)\\ B = B_msin(kx-\omega t) E=Em​sin(kx−ωt)B=Bm​sin(kx−ωt)

​ 波速为光速

c = 1 μ 0 ε 0 c = \frac{1}{\sqrt{\mu_0\varepsilon_0}} c=μ0​ε0​

​1​

​ 波速与电场和磁场的振幅关系是:

E m B m = c \frac{E_m}{B_m} = c Bm​Em​​=c

​ 坡印亭矢量(Poynting Vector)

​ 该量给出了波在该点的传播方向及能量运输的方向

S ⃗ = 1 μ 0 E ⃗ × B ⃗ \vec S = \frac{1}{\mu_0}\vec E \times \vec B S

=μ0​1​E

×B

​ 另一种表示方法为

S = ( 功 率 面 积 ) i n s t S = (\frac{功率}{面积})_{inst} S=(面积功率​)inst​

​ 在电磁波中

S = 1 μ 0 E B ∴ S = 1 c μ 0 E 2 S = \frac{1}{\mu_0}EB\\ \therefore S = \frac{1}{c\mu_0}E^2 S=μ0​1​EB∴S=cμ0​1​E2

​ 波的平均强度 I ,也就是 S a v g S_{avg} Savg​,

I = = 1 c μ 0 [ E m 2 s i n 2 ( k x − ω t ) ] a v g I = = \frac{1}{c\mu_0}[E_m^2sin^2(kx-\omega t)]_{avg} I==cμ0​1​[Em2​sin2(kx−ωt)]avg​

​ 电场的root-mean-square, $ E_{rms} =\displaystyle \frac{E_m}{\sqrt 2}$, 所以我们可以把式子写为

I = 1 c μ 0 E r m s 2 I= \frac{1}{c\mu_0}E_{rms}^2 I=cμ0​1​Erms2​

强度随距离的变化

​ 其中 P s P_s Ps​表示源的功率

I = P s 4 π r 2 I = \frac{P_s}{4\pi r^2} I=4πr2Ps​​

偏振(Polarization)

​ 减半定则(one-half rule)

I = 1 2 I 0 I = \frac{1}{2} I_0 I=21​I0​

​ 偏振光经过偏振片之后, θ \theta θ是 E ⃗ \vec E E

和薄片的偏振方向的夹角,透过的平行分量是

E y = E c o s θ E_y = Ecos\theta Ey​=Ecosθ

​ 波长强度正比于电场E,所以经过偏振之后我们有,cosine-square rule(余弦平方原则)

I = I 0 c o s 2 θ I = I_0cos^2\theta I=I0​cos2θ

​ 反射和折射(Reflection and Refraction)

​ 反射定律——入射角等于出射角

θ 1 ′ = θ 1 \theta_1' = \theta_1 θ1′​=θ1​

​ 折射定律(n1,n2表示不同介质下的折射率)

n 2 s i n θ 2 = n 1 s i n θ 2 n_2sin\theta_2 = n_1sin\theta_2 n2​sinθ2​=n1​sinθ2​

​ 反射引起的偏振(Polarization by Reflection)

​ Brewster’s Law(布儒斯特定律)

​ 当光以一个特别的角度(Brewster angle θ B \theta_B θB​),反射光没有垂直分量,反射角 θ B \theta_B θB​, 入射角 θ r \theta_r θr​​, 满足

θ B + θ r = 90 ° \theta_B + \theta_r = 90° θB​+θr​=90°

Ch 37 Relativity (相对论)

​ 同时性的相对性(The Relativity of Simultaneity)

​ 同时性不是一个绝对的而是一个相对的概念,决定于观察者的运动

​ 时间的相对性

​ time dilation(时间膨胀)

Δ t = Δ t 0 1 − ( v / c ) 2 \Delta t = \frac{\Delta t_0}{\sqrt {1-(v/c)^2}} Δt=1−(v/c)2

​Δt0​​

​ speed parameter(速率参量)

β = v c ( < 1 ) \beta = \frac{v}{c}(<1) β=cv​(<1)

​ 洛伦兹因子(Lorentz factor)

γ = 1 1 − β 2 = 1 1 − ( v c ) 2 \gamma = \frac{1}{\sqrt{1-\beta^2}} =\displaystyle \frac{1}{\sqrt{1-(\frac{v}{c})^2}} γ=1−β2

​1​=1−(cv​)2

​1​

​ 所以我们得到

Δ t = γ Δ t 0 \Delta t = \gamma \Delta t_0 Δt=γΔt0​

长度的相对性(The relativity of length)

​ 长度缩短公式

L = L 0 γ L = \frac{L_0}{\gamma} L=γL0​​

洛伦兹变换(The Lorentz Transformation)

​ 洛伦兹变化方程

x ′ = γ ( x − v t ) t ′ = γ ( t − v x / c 2 ) x' = \gamma (x-vt)\\t' = \gamma (t-vx/c^2) x′=γ(x−vt)t′=γ(t−vx/c2)

光的多普勒效应(Doppler Effect)

​ 对于低速多普勒效应,我们有

f = f 0 ( 1 − β + 1 2 β 2 ) f = f_0 (1-\beta + \frac{1}{2}\beta^2) f=f0​(1−β+21​β2)

​ 天文多普勒效应(Astronomical Doppler Effect)

​ 当 β \beta β足够小,上面式子中的 β 2 \beta^2 β2可以把它忽略掉,

f = f 0 ( 1 ± β ) f = c λ v = Δ λ c λ f = f_0(1±\beta)\\f=\frac{c}{\lambda}\\v = \frac{\Delta \lambda c}{\lambda} f=f0​(1±β)f=λc​v=λΔλc​

对于动量来说,

p ⃗ = γ m v ⃗ \vec p = \gamma m \vec v p

​=γmv

对能量来说,

​ 质量能

E 0 = m c 2 E_0 = mc^2 E0​=mc2

​ 物体总能量

E = m c 2 + K = γ m c 2 E = mc^2+K = \gamma mc^2 E=mc2+K=γmc2

​ 孤立系统中物体总能量是不会发生变化的

​ 物体动能

E k = m c 2 ( γ − 1 ) E_k = mc^2(\gamma - 1) Ek​=mc2(γ−1)

Ch 38 Photons and Matter Wave(光子和物质波)

光子能量

E = h f E = hf E=hf

光电效应(The Photoelectric Effect)

​ 遏止电压(Stopping potential)

K m a x = e V s t o p K_{max} = eV_{stop} Kmax​=eVstop​

​ 光电效应方程(The Photoelectric effect)

h f = ϕ + K m a x V s t o p = ( h e ) f − ϕ e hf = \phi + K_{max}\\ V_{stop} = (\frac{h}{e})f - \frac{\phi}{e} hf=ϕ+Kmax​Vstop​=(eh​)f−eϕ​

光子的动量

p = h λ p = \frac{h}{\lambda} p=λh​

康普顿实验(Compton’s experiment)

​ 两个波峰之间的 Δ λ \Delta \lambda Δλ满足

Δ λ = h m c ( 1 − c o s ϕ ) \Delta \lambda = \frac{h}{mc} (1-cos\phi) Δλ=mch​(1−cosϕ)

物质波

λ = h p \lambda = \frac{h}{p} λ=ph​

薛定谔方程(Schrodinger’s Equation)

ψ ( x , y , z , t ) = ψ ( x , y , z ) e − i ω t \psi(x,y,z,t) = \psi(x,y,z)e^{-i\omega t} ψ(x,y,z,t)=ψ(x,y,z)e−iωt

​ ∣ Ψ 2 ∣ |\Psi^2| ∣Ψ2∣​ 是概率密度(probability density)

​ 薛定谔方程一维运动

d 2 ψ d 2 x + 8 π 2 m h 2 [ E − U ( x ) ] ψ = 0 \frac{d^2 \psi}{d^2 x} + \frac{8\pi ^2 m }{h^2}[E-U(x)]\psi = 0 d2xd2ψ​+h28π2m​[E−U(x)]ψ=0

海参堡不确定原理(Heisenberg’s Uncentainty Principle)

​ 其中 ℏ = h 2 π \hslash = \displaystyle\frac{h}{2\pi} ℏ=2πh​

Δ x ⋅ Δ p x ≥ ℏ Δ y ⋅ Δ p y ≥ ℏ Δ z ⋅ Δ p z ≥ ℏ \Delta x \cdot \Delta p_x \ge \hslash\\ \Delta y \cdot \Delta p_y \ge \hslash\\ \Delta z \cdot \Delta p_z \ge \hslash Δx⋅Δpx​≥ℏΔy⋅Δpy​≥ℏΔz⋅Δpz​≥ℏ

势垒隧穿 (barrier tunneling)

​ 透射系数(transmission coefficient)

T = e − 2 k L , k = 8 π 2 m ( U 0 − E ) h 2 T = e^{-2kL},k = \sqrt{\frac{8\pi^2 m (U_0-E)}{h^2}} T=e−2kL,k=h28π2m(U0​−E)​

Ch 39 再论物质波(More about matter waves)

能级的能量

E n = ( h 2 8 m L 2 ) n 2 E_n = (\frac{h^2}{8mL^2})n^2 En​=(8mL2h2​)n2

检测的概率(Probability of Detection)

p ( x ) = ψ 2 ( x ) d x p(x) = \psi^2(x)dx p(x)=ψ2(x)dx

在 0 ≤ x ≤ L 0\le x \le L 0≤x≤L 区间里,我们有

ψ 2 ( x ) = A 2 s i n 2 ( n π L x ) , n = 1 , 2 , 3 , 4 , … … \psi ^2(x) = A^2 sin^2(\frac{n\pi}{L} x),n=1,2,3,4,…… ψ2(x)=A2sin2(Lnπ​x),n=1,2,3,4,……

根据归一性(积分为1),我们得到

A = 2 / L A = \sqrt {2/L} A=2/L

二维和三维的电子陷阱(Two and Three-Dimensional Electron Traps)

E n x . n y = h 2 8 m ( n x 2 L x 2 + n y 2 L y 2 ) E_{nx.ny} = \frac{h^2}{8m}(\frac{n_x^2}{L_x^2}+\frac{n_y^2}{L_y^2}) Enx.ny​=8mh2​(Lx2​nx2​​+Ly2​ny2​​)

氢原子的势能

U = − 1 4 π ε 0 e 2 r U = - \frac{1}{4\pi \varepsilon_0}\frac{e^2}{r} U=−4πε0​1​re2​

氢原子各量子态能量由下式子给出:

E n = − 13.6 e V n 2 , f o r   n = 1 , 2 , 3 , 4. … … E_n = - \frac{13.6eV}{n^2},for\ n = 1,2,3,4.…… En​=−n213.6eV​,for n=1,2,3,4.……

继续阅读