導讀:
文章由算法源碼吧(www.sfcode.cn)收集
這是一個非常簡單的遺傳算法源代碼,是由Denis Cormier (North Carolina State University)開發的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代碼保證盡可能少,實際上也不必查錯。對一特定的應用修正此代碼,使用者隻需改變常數的定義并且定義“評價函數”即可。注意代碼 的設計是求最大值,其中的目标函數隻能取正值;且函數值和個體的适應值之間沒有差別。該系統使用比率選擇、精華模型、單點雜交和均勻變異。如果用 Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有螢幕輸出,主要是保證在平台之間的高可移植性。讀者可以從ftp.uncc.edu, 目錄 coe/evol中的檔案prog.c中獲得。要求輸入的檔案應該命名為‘gadata.txt’;系統産生的輸出檔案為‘galog.txt’。輸入的 檔案由幾行組成:數目對應于變量數。且每一行提供次序——對應于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。
#include
#define POPSIZE 50
#define MAXGENS 1000
#define NVARS 3
#define PXOVER 0.8
#define PMUTATION 0.15
#define TRUE 1
#define FALSE 0
int generation;
int cur_best;
FILE *galog;
struct genotype
{
double gene[NVARS];
double fitness;
double upper[NVARS];
double lower[NVARS];
double rfitness;
double cfitness;
};
struct genotype population[POPSIZE+1];
struct genotype newpopulation[POPSIZE+1];
void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);
void initialize(void)
FILE *infile;
int i, j;
double lbound, ubound;
if ((infile = fopen("gadata.txt","r"))==NULL)
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}
for (i = 0; i
fscanf(infile, "%lf",&lbound);
fscanf(infile, "%lf",&ubound);
for (j = 0; j
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],
population[j].upper[i]);
fclose(infile);
double randval(double low, double high)
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
void evaluate(void)
int mem;
int i;
double x[NVARS+1];
for (mem = 0; mem
x[i+1] = population[mem].gene[i];
population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
void keep_the_best()
cur_best = 0;
if (population[mem].fitness >population[POPSIZE].fitness)
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
population[POPSIZE].gene[i] = population[cur_best].gene[i];
void elitist()
double best, worst;
int best_mem, worst_mem;
best = population[0].fitness;
worst = population[0].fitness;
if(population[i].fitness >population[i+1].fitness)
if (population[i].fitness >= best)
best = population[i].fitness;
best_mem = i;
if (population[i+1].fitness <= worst)
worst = population[i+1].fitness;
worst_mem = i + 1;
else
if (population[i].fitness <= worst)
worst = population[i].fitness;
worst_mem = i;
if (population[i+1].fitness >= best)
best = population[i+1].fitness;
best_mem = i + 1;
if (best >= population[POPSIZE].fitness)
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
void select(void)
int mem, i, j, k;
double sum = 0;
double p;
sum += population[mem].fitness;
population[mem].rfitness = population[mem].fitness/sum;
population[0].cfitness = population[0].rfitness;
for (mem = 1; mem
population[mem].cfitness = population[mem-1].cfitness +
population[mem].rfitness;
p = rand()%1000/1000.0;
if (p
newpopulation[i] = population[0];
if (p >= population[j].cfitness &&
p
newpopulation[i] = population[j+1];
population[i] = newpopulation[i];
void crossover(void)
int i, mem, one;
int first = 0;
double x;
x = rand()%1000/1000.0;
if (x
++first;
if (first % 2 == 0)
Xover(one, mem);
one = mem;
void Xover(int one, int two)
int point;
if(NVARS >1)
if(NVARS == 2)
point = 1;
point = (rand() % (NVARS - 1)) + 1;
swap(&population[one].gene[i], &population[two].gene[i]);
void swap(double *x, double *y)
double temp;
temp = *x;
*x = *y;
*y = temp;
void mutate(void)
double lbound, hbound;
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
void report(void)
double best_val;
double avg;
double stddev;
double sum_square;
double square_sum;
double sum;
sum = 0.0;
sum_square = 0.0;
sum += population[i].fitness;
sum_square += population[i].fitness * population[i].fitness;
avg = sum/(double)POPSIZE;
square_sum = avg * avg * POPSIZE;
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,
best_val, avg, stddev);
void main(void)
if ((galog = fopen("galog.txt","w"))==NULL)
generation = 0;
fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generation
generation++;
select();
crossover();
mutate();
report();
elitist();
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
本文轉自feisky部落格園部落格,原文連結:http://www.cnblogs.com/feisky/archive/2008/04/11/1586624.html,如需轉載請自行聯系原作者