寫在前面的話
按照之前寫的節奏來的話,這篇改對View的整個測量、布局和繪制過程進行分析了。在之前的
Activity顯示到Window的過程中了解到
performTraversals()
這個方法會執行
performMeasure()
去測量View的大小,
performLayout()
去将子View放到合适的位置上,
performDraw()
将View真正繪制出來。
1. measure的過程
1.1 在測量前,先看下MeasureSpec
MeasureSpec了解為測量規格,從源碼中可以知道測量規格包括了測量模式(SpecMode)和大小(SpecSize),這個規格通過一個int型來表示。其中int的高2位代表了測量模式,低30位代表了大小。我們都知道兩位可以有四種組合情況,而Android中View有三種測量模式,分别是:
- UNSPECIFIED(0 << 30):子View可以想要任意大小
- EXACTLY(1 << 30):父容器已經檢測出子View所需要的精确大小,View的大小即為SpecSize的大小,他對應于布局參數中的MATCH_PARENT,或者精确值
-
AT_MOST(2 << 30):父容器指定了一個大小,即SpecSize,子View的大小不能超過這個SpecSize的大小
通過測量規格擷取測量模式和大小:
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
// 獲得SpecMode
@MeasureSpecMode
public static int getMode(int measureSpec) {
return (measureSpec & MODE_MASK);
}
// 獲得SpecSize
public static int getSize(int measureSpec) {
return (measureSpec & ~MODE_MASK);
}
從上面可以看到,獲得SpecMode時,需要和MODE_MASK(0x30000000)進行與運算,因為低30位全為0,高2位都為1,是以最終的結果就是高2位<<30的值,也就是我們三個測量模式中的一個。
同理,在獲得SpecSize時,我們需要将SpecMode去除,獲得低30位的值,是以這裡進行的是與上非MODE_MASK運算,即擷取低30位的值(SpecSize)。
1.2 getRootMeasureSpec方法
在執行
performMeasure()
方法前,會執行ViewRootImpl中的
getRootMeasureSpec
方法,通過這個方法來獲得跟布局的測量規格。
// mWidth和mHeight的值是通過
//if (mWidth != frame.width() || mHeight != frame.height()) {
//mWidth = frame.width();
//mHeight = frame.height();
//}
//指派,這裡等于Window視窗的寬高
int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
private static int getRootMeasureSpec(int windowSize, int rootDimension) {
int measureSpec;
switch (rootDimension) {
//rootDimension是decorView的params的參數,這裡為MATCH_PARENT,是以測量模式是EXACTLY
case ViewGroup.LayoutParams.MATCH_PARENT:
// Window can't resize. Force root view to be windowSize.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
break;
case ViewGroup.LayoutParams.WRAP_CONTENT:
// Window can resize. Set max size for root view.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
break;
default:
// Window wants to be an exact size. Force root view to be that size.
measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
break;
}
return measureSpec;
}
1.3 View的measure方法
在獲得了寬高的測量規格後,将會執行
performMeasure()
方法,
performMeasure()
方法會調用DecorView的
measure()
方法,DecorView和其父類并沒有重寫這個measure方法,最終會調用View的measure方法。
public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
//判斷目前View的layoutMode是不是LAYOUT_MODE_OPTICAL_BOUNDS,這種情況很少
boolean optical = isLayoutModeOptical(this);
if (optical != isLayoutModeOptical(mParent)) {
Insets insets = getOpticalInsets();
int oWidth = insets.left + insets.right;
int oHeight = insets.top + insets.bottom;
widthMeasureSpec = MeasureSpec.adjust(widthMeasureSpec, optical ? -oWidth : oWidth);
heightMeasureSpec = MeasureSpec.adjust(heightMeasureSpec, optical ? -oHeight : oHeight);
}
// 作為緩存的key
// Suppress sign extension for the low bytes
long key = (long) widthMeasureSpec << 32 | (long) heightMeasureSpec & 0xffffffffL;
if (mMeasureCache == null) mMeasureCache = new LongSparseLongArray(2);
final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT;
// Optimize layout by avoiding an extra EXACTLY pass when the view is
// already measured as the correct size. In API 23 and below, this
// extra pass is required to make LinearLayout re-distribute weight.
final boolean specChanged = widthMeasureSpec != mOldWidthMeasureSpec
|| heightMeasureSpec != mOldHeightMeasureSpec;
final boolean isSpecExactly = MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY
&& MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;
final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)
&& getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);
final boolean needsLayout = specChanged
&& (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);
// 需要布局
if (forceLayout || needsLayout) {
// first clears the measured dimension flag
mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;
resolveRtlPropertiesIfNeeded();
// 如果是強制布局的話,則需要重新去調用onMeasure方法,否則去緩存中擷取
int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
if (cacheIndex < 0 || sIgnoreMeasureCache) {
// measure ourselves, this should set the measured dimension flag back
onMeasure(widthMeasureSpec, heightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
} else {
long value = mMeasureCache.valueAt(cacheIndex);
// Casting a long to int drops the high 32 bits, no mask needed
setMeasuredDimensionRaw((int) (value >> 32), (int) value);
mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
// flag not set, setMeasuredDimension() was not invoked, we raise
// an exception to warn the developer
if ((mPrivateFlags & PFLAG_MEASURED_DIMENSION_SET) != PFLAG_MEASURED_DIMENSION_SET) {
throw new IllegalStateException("View with id " + getId() + ": "
+ getClass().getName() + "#onMeasure() did not set the"
+ " measured dimension by calling"
+ " setMeasuredDimension()");
}
mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
}
mOldWidthMeasureSpec = widthMeasureSpec;
mOldHeightMeasureSpec = heightMeasureSpec;
// 放到緩存中
mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
(long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
}
// onMeasure中需要去設定測量的結果,View的預設實作是設定預設的大小,這個大小根據測量模式來确定
// 如果是UNSPECIFIED:未指定的話則大小為建議的最小值
// 如果是AT_MOST||EXACTLY,那麼傳回值為SpecSize
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
protected final void setMeasuredDimension(int measuredWidth, int measuredHeight) {
boolean optical = isLayoutModeOptical(this);
if (optical != isLayoutModeOptical(mParent)) {
Insets insets = getOpticalInsets();
int opticalWidth = insets.left + insets.right;
int opticalHeight = insets.top + insets.bottom;
measuredWidth += optical ? opticalWidth : -opticalWidth;
measuredHeight += optical ? opticalHeight : -opticalHeight;
}
// 真正為mMeasuredWidth和mMeasuredHeight指派
setMeasuredDimensionRaw(measuredWidth, measuredHeight);
}
// 為mMeasuredWidth和mMeasuredHeight指派
private void setMeasuredDimensionRaw(int measuredWidth, int measuredHeight) {
mMeasuredWidth = measuredWidth;
mMeasuredHeight = measuredHeight;
mPrivateFlags |= PFLAG_MEASURED_DIMENSION_SET;
}
從代碼中可以看到,如果我們需要進行布局的話,首先判斷是否為強制布局,如果不是的話獲得mMeasureCache中目前測量規格的位置。如果沒有這個緩存,則說明需要去進行onMeasure方法去測量真正的寬高,最後将目前寬高的測量規格儲存到緩存中。
在調用View的onMeasure方法時,我們需要調用
setMeasuredDimension
方法來設定具體的寬高,當調用了這個方法後,會通過
setMeasuredDimensionRaw
方法來給mMeasuredWidth和mMeasuredHeight指派,這樣我們通過getMeasuredWidthAndState()擷取mMeasuredWidth值或者通過getMeasuredWidth()來擷取
mMeasuredWidth & MEASURED_SIZE_MASK(0x00ffffff)
值。
上面寫到的都是View裡面關于測量的方法,從這裡我們就看出來了,View的測量确定了View的四個點的位置以及測量的寬高。ViewGroup作為View的子類,其并沒有重寫onMeasure方法,作為ViewGroup的子類基本上都會重寫onMeasure方法,通過onMeasure方法來測量子View的大小,通過子View的大小最終來确定自己的大小。
下面是FrameLayout的測量過程:
FrameLayout.java
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
int count = getChildCount();
// 如果目前的測量模式不是EXACTLY,則需要統計擁有MATCH_PARENT屬性的子View
// 在設定完成目前layout的寬高後,需要重新測量擁有MATCH_PARENT屬性的子View
final boolean measureMatchParentChildren =
MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY ||
MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY;
mMatchParentChildren.clear();
int maxHeight = 0;
int maxWidth = 0;
int childState = 0;
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
// 如果子View不是隐藏狀态,則需要測量
if (mMeasureAllChildren || child.getVisibility() != GONE) {
// 測量子View
measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
// 設定最大寬度,每個子View和目前的最大寬度進行比較
maxWidth = Math.max(maxWidth,
child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);
maxHeight = Math.max(maxHeight,
child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);
childState = combineMeasuredStates(childState, child.getMeasuredState());
if (measureMatchParentChildren) {
if (lp.width == LayoutParams.MATCH_PARENT ||
lp.height == LayoutParams.MATCH_PARENT) {
mMatchParentChildren.add(child);
}
}
}
}
// Account for padding too
maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();
maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();
// Check against our minimum height and width
maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());
maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());
// Check against our foreground's minimum height and width
final Drawable drawable = getForeground();
if (drawable != null) {
maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());
maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());
}
// 為目前layout設定寬高
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
resolveSizeAndState(maxHeight, heightMeasureSpec,
childState << MEASURED_HEIGHT_STATE_SHIFT));
// 如果有MATCH_PARENT屬性的子View大于1的話,則需要重新去測量這些子View
count = mMatchParentChildren.size();
if (count > 1) {
for (int i = 0; i < count; i++) {
final View child = mMatchParentChildren.get(i);
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
final int childWidthMeasureSpec;
if (lp.width == LayoutParams.MATCH_PARENT) {
final int width = Math.max(0, getMeasuredWidth()
- getPaddingLeftWithForeground() - getPaddingRightWithForeground()
- lp.leftMargin - lp.rightMargin);
childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
width, MeasureSpec.EXACTLY);
} else {
childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
getPaddingLeftWithForeground() + getPaddingRightWithForeground() +
lp.leftMargin + lp.rightMargin,
lp.width);
}
final int childHeightMeasureSpec;
if (lp.height == LayoutParams.MATCH_PARENT) {
final int height = Math.max(0, getMeasuredHeight()
- getPaddingTopWithForeground() - getPaddingBottomWithForeground()
- lp.topMargin - lp.bottomMargin);
childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
height, MeasureSpec.EXACTLY);
} else {
childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec,
getPaddingTopWithForeground() + getPaddingBottomWithForeground() +
lp.topMargin + lp.bottomMargin,
lp.height);
}
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
}
}
ViewGroup.java
protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed) {
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
+ widthUsed, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
+ heightUsed, lp.height);
// 兩個測量規格都有了,接着通過child.measure去測量自身大小
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
ViewGroup.java
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
int specMode = MeasureSpec.getMode(spec);
int specSize = MeasureSpec.getSize(spec);
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode) {
// EXACTLY如果是精确大小的話,則根據child的大小來計算具體大小
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0) {
// 如果設定有具體值,則結果設定具體值,模式為EXACTLY
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size. So be it.
// MATCH_PARENT則設定父View的大小,模式為EXACTLY
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
// 結果設定成父View大小,并且測量模式設定成AT_MOST
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// AT_MOST模式
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0) {
// Child wants a specific size... so be it
// 設定具體大小,并且測量模式是EXACTLY
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
// 設定成父View大小,并且模式是AT_MOST
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
// 設定成父View大小,并且模式是AT_MOST
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// UNSPECIFIED模式
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0) {
// Child wants a specific size... let him have it
// 設定具體大小,并且測量模式是EXACTLY
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size... find out how big it should
// be
// sUseZeroUnspecifiedMeasureSpec = targetSdkVersion < M
// 通過targetSdkVersion來判斷size設定為0還是父View的size,并且測量模式設定UNSPECIFIED
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size.... find out how
// big it should be
// 通過targetSdkVersion來判斷size設定為0還是父View的size,并且測量模式設定UNSPECIFIED
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
}
break;
}
//noinspection ResourceType
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
View.java
// 這個我的了解是解析size并使這個size擁有一個狀态
public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
final int specMode = MeasureSpec.getMode(measureSpec);
final int specSize = MeasureSpec.getSize(measureSpec);
final int result;
switch (specMode) {
// 如果是AT_MOST模式,則需要判斷需要的size和測量規格的SpecSize的大小
// 如果需要的size>SpecSize,那麼使用SpecSize,并且設定标志位為MEASURED_STATE_TOO_SMALL = 0x01000000
// 這個标志為代表了目前測量規格的大小小于所需大小
case MeasureSpec.AT_MOST:
if (specSize < size) {
result = specSize | MEASURED_STATE_TOO_SMALL;
} else {
result = size;
}
break;
// 如果測量模式是EXACTLY,那麼這個結果就是specSize
case MeasureSpec.EXACTLY:
result = specSize;
break;
// 其他情況都是所需的size
case MeasureSpec.UNSPECIFIED:
default:
result = size;
}
//MEASURED_STATE_MASK = 0xff000000,這裡的結果都帶有一個狀态,這個狀态的用處不詳。。。
return result | (childMeasuredState & MEASURED_STATE_MASK);
}
從上面FrameLayout的測量過程我們可以看到,整個流程如下:
流程圖
測量過程:
- FrameLayout調用onMeasure方法,開始測量
- FrameLayout的onMeasure方法中調用了其父類的measureChildWithMargins方法去測量子View的大小
- measureChildWithMargins通過getChildMeasureSpec方法獲得子View的測量規格後調用子View的measure方法
- 子View通過調用onMeasure方法最終通過setMeasuredDimension設定具體的測量後的寬高
- FrameLayout在獲得所有子View的結果後,擷取其中的最大值,并且如果有背景圖的話,擷取子View和背景圖的最大值,同樣通過setMeasuredDimension設定FrameLayout的大小
2. layout過程
measure之後就會進行layout過程。layout其實就是對View的left、top、right、bottom這四個點位置的确定的過程。從源碼可以看到,View中實作了layout方法,ViewGroup對其進行了Override,但是ViewGroup會調用super.layout(l, t, r, b),是以最終還是進入View的layout方法。
在ViewGroup中onLayout是一個抽象方法,這就意味着所有的子類需要實作這個抽象方法。一般來說,每個不同的layout都有不同的實作,這樣就構成了我們Android各種布局。當然了,自定義控件中關于onLayout的實作也是很重要的。下面還是關于FrameLayout的layout的實作:
View.java
public void layout(int l, int t, int r, int b) {
// mPrivateFlags3的指派是在measure方法中,多次測量是在不是強制layout并且有緩存的情況下進行指派的
// 這種情況需要重新調用onMeasure方法,對View重新設定大小
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
// 是否使用視覺邊界布局效果,這個并不影響這個流程,因為setOpticalFrame也會調用setFrame方法
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
// 如果有改變,則需要重新布局
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
// 調用onLayout方法進行布局
onLayout(changed, l, t, r, b);
if (shouldDrawRoundScrollbar()) {
if(mRoundScrollbarRenderer == null) {
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
}
} else {
mRoundScrollbarRenderer = null;
}
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
// 調用OnLayoutChangeListener的onLayoutChange方法
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
View.java
// 傳回值是boolean,代表是否位置改變了,如果和以前的位置不同,則說明改變了,需要重新布局
protected boolean setFrame(int left, int top, int right, int bottom) {
boolean changed = false;
// 如果和以前的位置不同,則說明改變了,需要重新布局
if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
changed = true;
// Remember our drawn bit
int drawn = mPrivateFlags & PFLAG_DRAWN;
int oldWidth = mRight - mLeft;
int oldHeight = mBottom - mTop;
int newWidth = right - left;
int newHeight = bottom - top;
// 原寬高和新寬高如果不一緻,則說明尺寸改變了
boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);
// 使我們舊的位置無效
// Invalidate our old position
invalidate(sizeChanged);
mLeft = left;
mTop = top;
mRight = right;
mBottom = bottom;
mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);
mPrivateFlags |= PFLAG_HAS_BOUNDS;
// 如果尺寸改變了,調用sizeChange方法,這裡面會調用onSizeChanged方法
if (sizeChanged) {
sizeChange(newWidth, newHeight, oldWidth, oldHeight);
}
if ((mViewFlags & VISIBILITY_MASK) == VISIBLE || mGhostView != null) {
// If we are visible, force the DRAWN bit to on so that
// this invalidate will go through (at least to our parent).
// This is because someone may have invalidated this view
// before this call to setFrame came in, thereby clearing
// the DRAWN bit.
mPrivateFlags |= PFLAG_DRAWN;
invalidate(sizeChanged);
// parent display list may need to be recreated based on a change in the bounds
// of any child
invalidateParentCaches();
}
// Reset drawn bit to original value (invalidate turns it off)
mPrivateFlags |= drawn;
mBackgroundSizeChanged = true;
if (mForegroundInfo != null) {
mForegroundInfo.mBoundsChanged = true;
}
notifySubtreeAccessibilityStateChangedIfNeeded();
}
return changed;
}
FrameLayout.java
@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
layoutChildren(left, top, right, bottom, false /* no force left gravity */);
}
FrameLayout.java
void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) {
final int count = getChildCount();
// 獲得目前View的四個可布局的點
final int parentLeft = getPaddingLeftWithForeground();
final int parentRight = right - left - getPaddingRightWithForeground();
final int parentTop = getPaddingTopWithForeground();
final int parentBottom = bottom - top - getPaddingBottomWithForeground();
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (child.getVisibility() != GONE) {
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
final int width = child.getMeasuredWidth();
final int height = child.getMeasuredHeight();
int childLeft;
int childTop;
int gravity = lp.gravity;
if (gravity == -1) {
gravity = DEFAULT_CHILD_GRAVITY;
}
// 獲得布局的方向,如果沒有設定flag PFLAG2_LAYOUT_DIRECTION_RESOLVED_RTL,則為從左到右布局
// 右到左布局在有些國家會出現這種情況
final int layoutDirection = getLayoutDirection();
// 獲得目前布局的絕對顯示位置,這裡會根據布局方向來設定具體是從左邊開始還是右邊開始
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
// 垂直方法的顯示位置
final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;
// 水準方向顯示位置的設定
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
// 水準居中
case Gravity.CENTER_HORIZONTAL:
childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
lp.leftMargin - lp.rightMargin;
break;
// 從右邊開始
case Gravity.RIGHT:
if (!forceLeftGravity) {
childLeft = parentRight - width - lp.rightMargin;
break;
}
// 左邊和預設的情況都是左邊開始布局
case Gravity.LEFT:
default:
childLeft = parentLeft + lp.leftMargin;
}
// 垂直方向的布局
switch (verticalGravity) {
// 頂部開始
case Gravity.TOP:
childTop = parentTop + lp.topMargin;
break;
// 垂直居中
case Gravity.CENTER_VERTICAL:
childTop = parentTop + (parentBottom - parentTop - height) / 2 +
lp.topMargin - lp.bottomMargin;
break;
// 底部開始
case Gravity.BOTTOM:
childTop = parentBottom - height - lp.bottomMargin;
break;
// 預設頂部開始
default:
childTop = parentTop + lp.topMargin;
}
// 子View布局
child.layout(childLeft, childTop, childLeft + width, childTop + height);
}
}
}
layout流程圖
layout
的過程就是确定目前View的left、top、right、bottom這四個點位置,通過這四個點可以确定這個View的位置,進而在繪制的時候正确繪制。layout的過程和measure的過程不同,layout的過程是先确定自己的位置在确定其子View的位置。
3. draw
draw
過程在之前的
中有寫到過,在整個過程中,會調用View的draw方法:
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/
// Step 1, draw the background, if needed
int saveCount;
if (!dirtyOpaque) {
// 繪制背景
drawBackground(canvas);
}
// 通常來算是跳過2和5部分。這裡隻看下跳過2和5部分時,整個流程
// skip step 2 & 5 if possible (common case)
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, draw the content
// 調用onDraw方法,去繪制内容
if (!dirtyOpaque) onDraw(canvas);
// 分發繪制事件
// Step 4, draw the children
dispatchDraw(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// 繪制裝飾内容
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
// we're done...
return;
}
......
}
從代碼中我們可以了解到,整個繪制過程一共有6步,但是通常來說第2步和第5步不會調用:
- 繪制背景 drawBackground
- 儲存畫布圖層
- 繪制内容 onDraw
- 分發繪制事件(繪制子View) dispatchDraw
- 繪制并恢複圖層
- 繪制裝飾 onDrawForeground
3.1 drawBackground
private void drawBackground(Canvas canvas) {
final Drawable background = mBackground;
// 背景為空,直接傳回
if (background == null) {
return;
}
// 設定背景的邊界值
setBackgroundBounds();
// Attempt to use a display list if requested.
if (canvas.isHardwareAccelerated() && mAttachInfo != null
&& mAttachInfo.mHardwareRenderer != null) {
mBackgroundRenderNode = getDrawableRenderNode(background, mBackgroundRenderNode);
final RenderNode renderNode = mBackgroundRenderNode;
if (renderNode != null && renderNode.isValid()) {
setBackgroundRenderNodeProperties(renderNode);
((DisplayListCanvas) canvas).drawRenderNode(renderNode);
return;
}
}
// 滾動的x和y值
final int scrollX = mScrollX;
final int scrollY = mScrollY;
// 沒有滾動,直接繪制
if ((scrollX | scrollY) == 0) {
background.draw(canvas);
} else {
// 将canvas移動後再繪制
canvas.translate(scrollX, scrollY);
background.draw(canvas);
canvas.translate(-scrollX, -scrollY);
}
}
void setBackgroundBounds() {
// 如果背景尺寸改變并且背景不為空,這設定其邊界為0,0,width,height
if (mBackgroundSizeChanged && mBackground != null) {
mBackground.setBounds(0, 0, mRight - mLeft, mBottom - mTop);
mBackgroundSizeChanged = false;
rebuildOutline();
}
}
drawBackground方法比較簡單,總體來說就是繪制View的背景,當然根據背景是否存在,是否頁面滾動了來繪制背景。
3.2 onDraw
onDraw是沒有具體實作的内容,一般來說在自定義View的時候,很多時候會重寫onDraw方法來繪制真正要實作的内容。
3.3 dispatchDraw
從注釋來看,dispatchDraw作為繪制子View的開始,其在View中是空實作。在ViewGroup中有dispatchDraw方法的具體實作:
ViewGroup.java
// 我們隻關注如何繪制childView,内容省略了一大部分
// 這裡面可以看到會調用drawChild去繪制其子View
@Override
protected void dispatchDraw(Canvas canvas) {
......
// 我們隻關注如何繪制childView
for (int i = 0; i < childrenCount; i++) {
while (transientIndex >= 0 && mTransientIndices.get(transientIndex) == i) {
......
final int childIndex = getAndVerifyPreorderedIndex(childrenCount, i, customOrder);
final View child = getAndVerifyPreorderedView(preorderedList, children, childIndex);
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
// 繪制其子View
more |= drawChild(canvas, child, drawingTime);
}
}
......
}
ViewGroup.java
// 子View會調用其傳回值為boolean的draw方法去繪制
protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
return child.draw(canvas, this, drawingTime);
}
View.java
boolean draw(Canvas canvas, ViewGroup parent, long drawingTime) {
// 關于硬體加速模式
......
// 動畫相關
......
// 硬體加速相關,通過updateDisplayListIfDirty擷取顯示清單的renderNode最後下面繪制
if (drawingWithRenderNode) {
// Delay getting the display list until animation-driven alpha values are
// set up and possibly passed on to the view
renderNode = updateDisplayListIfDirty();
if (!renderNode.isValid()) {
// Uncommon, but possible. If a view is removed from the hierarchy during the call
// to getDisplayList(), the display list will be marked invalid and we should not
// try to use it again.
renderNode = null;
drawingWithRenderNode = false;
}
}
......
// 如果使用緩存去繪制,則通過cache繪制,否則還是會調用View的draw(canvas)方法繪制
if (!drawingWithDrawingCache) {
// 硬體加速的話通過drawRenderNode去繪制,在之前講過了最後會調用View的draw(canvas)方法繪制
if (drawingWithRenderNode) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
((DisplayListCanvas) canvas).drawRenderNode(renderNode);
} else {
// Fast path for layouts with no backgrounds
// 無背景的快速繪制
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
//
dispatchDraw(canvas);
} else {
// 調用View的draw(canvas)方法繪制
draw(canvas);
}
}
} else if (cache != null) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
if (layerType == LAYER_TYPE_NONE || mLayerPaint == null) {
// no layer paint, use temporary paint to draw bitmap
Paint cachePaint = parent.mCachePaint;
if (cachePaint == null) {
cachePaint = new Paint();
cachePaint.setDither(false);
parent.mCachePaint = cachePaint;
}
cachePaint.setAlpha((int) (alpha * 255));
canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
} else {
// use layer paint to draw the bitmap, merging the two alphas, but also restore
int layerPaintAlpha = mLayerPaint.getAlpha();
if (alpha < 1) {
mLayerPaint.setAlpha((int) (alpha * layerPaintAlpha));
}
canvas.drawBitmap(cache, 0.0f, 0.0f, mLayerPaint);
if (alpha < 1) {
mLayerPaint.setAlpha(layerPaintAlpha);
}
}
}
......
return more;
}
繪制子View的過程要相對繁瑣一些,通過View的另一個draw方法來繪制子View,并且這個方法包括了動畫相關,硬體加速相關。上面的代碼有一部分省略了,其中比較重要的是兩個地方:
- 硬體加速相關過程:在之前的 中有寫到過,主要是通過
方法擷取顯示清單的renderNode最後通過硬體加速繪制。updateDisplayListIfDirty
- 軟體繪制過程:需要判斷是否使用緩存,如果使用緩存的話,直接繪制緩存,否則的話還需要按照上面的繪制流程一步步進行。
3.4 onDrawForeground
看這個名稱可以認為是繪制前景,其中包括了滾動條、滾動訓示器等。當然了,可以通過重寫這個方法去繪制任何想要的前景。
public void onDrawForeground(Canvas canvas) {
// 滾動訓示器繪制
onDrawScrollIndicators(canvas);
// 滾動條繪制
onDrawScrollBars(canvas);
// 前景
final Drawable foreground = mForegroundInfo != null ? mForegroundInfo.mDrawable : null;
if (foreground != null) {
if (mForegroundInfo.mBoundsChanged) {
mForegroundInfo.mBoundsChanged = false;
final Rect selfBounds = mForegroundInfo.mSelfBounds;
final Rect overlayBounds = mForegroundInfo.mOverlayBounds;
if (mForegroundInfo.mInsidePadding) {
selfBounds.set(0, 0, getWidth(), getHeight());
} else {
selfBounds.set(getPaddingLeft(), getPaddingTop(),
getWidth() - getPaddingRight(), getHeight() - getPaddingBottom());
}
final int ld = getLayoutDirection();
Gravity.apply(mForegroundInfo.mGravity, foreground.getIntrinsicWidth(),
foreground.getIntrinsicHeight(), selfBounds, overlayBounds, ld);
foreground.setBounds(overlayBounds);
}
// 前景的繪制
foreground.draw(canvas);
}
}
3.5 繪制順序
這裡還是使用
扔物線大神的一張圖來表示繪制順序吧。
繪制順序.jpg
3.6 draw的總結
整個繪制過程是一個自上向下的過程,在這個過程中先繪制自身的背景(drawBackground)、内容(onDraw),接着繪制子View(dispatchDraw)。子View的繪制過程又和上面的過程一樣,當所有的子View繪制完成後,會執行裝飾的繪制(onDrawForeground)
寫在後面的話
還是按照計劃來的,整個流程已經寫到了測量、布局和繪制的過程。總體來說感覺網上有些資料還是不夠靠譜,如果自己不去看一遍的話,可能會有許多坑等着你來填。
Go