0.文章系列連結
- SLS機器學習介紹(01):時序統計模組化
- SLS機器學習介紹(02):時序聚類模組化
- SLS機器學習介紹(03):時序異常檢測模組化
- SLS機器學習介紹(04):規則模式挖掘
- SLS機器學習介紹(05):時間序列預測
1.手中的錘子都有啥?
圍繞日志,挖掘其中更大價值,一直是我們團隊所關注。在原有日志實時查詢基礎上,今年SLS在DevOps領域完善了如下功能:
- 上下文查詢
- 實時Tail和智能聚類,以提高問題調查效率
- 提供多種時序資料的異常檢測和預測函數,來做更智能的檢查和預測
- 資料分析的結果可視化
- 強大的告警設定和通知,通過調用webhook進行關聯行動
今天我們重點介紹下,日志隻能聚類和異常告警如何配合,更好的進行異常發現和告警
2.平台實驗
2.1 實驗資料
一份Sys Log的原始資料,,并且開啟了日志聚類服務,具體的狀态截圖如下:
通過調整下面截圖中紅色框1的大小,可以改變圖中紅色框2的結果,但是對于每個最細粒度的pattern并不會改變,也就是說:子Pattern的結果是穩定且唯一的,我們可以通過子Pattern的Signature找到對應的原始日志條目。
2.2 生成子模式的時序資訊
假設,我們對這個子Pattern要進行監控:
msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
對應的 signature_id : __log_signature__: 1814836459146662485
我們得到了上述pattern對應的原始日志,可以看下具體的數量在時間軸上的直返圖:
上圖中,我們可以發現,這個模式的日志分布不是很均衡,其中還有一些是沒有的,如果直接按照時間視窗統計數量,得到的時序圖如下:
__log_signature__: 1814836459146662485 |
select
date_trunc('minute', __time__) as time,
COUNT(*) as num
from log GROUP BY time order by time ASC limit 10000
上述圖中我們發現時間上并不是連續的。是以,我們需要對這條時序進行補點操作。
__log_signature__: 1814836459146662485 |
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC limit 10000
2.3 對時序進行異常檢測
使用時序異常檢測函數: ts_predicate_arma
__log_signature__: 1814836459146662485 |
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg')
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC ) limit 10000
2.4 告警該如何設定
- 将機器學習函數的結果拆解開
__log_signature__: 1814836459146662485 |
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1)
- 針對最近兩分鐘的結果進行告警
__log_signature__: 1814836459146662485 |
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2
- 針對上升點進行告警,并設定兜底政策
__log_signature__: 1814836459146662485 |
select
sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax
from (
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2 )
具體的告警設定如下:
3.硬廣時間
3.1 日志進階
這裡是日志服務的各種功能的示範
日志服務整體介紹,各種Demo更多日志進階内容可以參考:
日志服務學習路徑。
3.2 聯系我們
糾錯或者幫助文檔以及最佳實踐貢獻,請聯系:悟冥
問題咨詢請加釘釘群: