遊戲規則
使用Alpha-Beta 剪枝搜尋實作
class AIPlayer:
"""
AI 玩家
"""
weight = [
[70, -20, 20, 20, 20, 20, -15, 70],
[-20,-30,5,5,5,5,-30,-15],
[20,5,1,1,1,1,5,20],
[20,5,1,1,1,1,5,20],
[20,5,1,1,1,1,5,20],
[20,5,1,1,1,1,5,20],
[-20,-30,5,5,5,5,-30,-15],
[70,-15,20,20,20,20,-15,70]
]
deepth = 0
maxdeepth = 6
emptylistFlag = 10000000
def __init__(self, color):
"""
玩家初始化
:param color: 下棋方,'X' - 黑棋,'O' - 白棋
"""
self.color = color
def calculate(self,board,color):
if color == 'X':
colorNext ='O'
else:
colorNext ='X'
count = 0
for i in range(8):
for j in range(8):
if color == board[i][j]:
count += self.weight[i][j]
elif colorNext == board[i][j]:
count -= self.weight[i][j]
return count
def alphaBeta(self,board,color,a,b):
# 遞歸終止
if self.deepth > self.maxdeepth:
return None, self.calculate(board,self.color)
if color == 'X':
colorNext ='O'
else:
colorNext ='X'
action_list = list(board.get_legal_actions(color))
if len(action_list) == 0:
if len(list(board.get_legal_actions(colorNext))) == 0:
return None,self.calculate(board,self.color)
return self.alphaBeta(board,colorNext,a,b)
max = -9999999
min = 9999999
action = None
for p in action_list:
flipped_pos = board._move(p,color)
self.deepth += 1
p1, current = self.alphaBeta(board,colorNext,a,b)
self.deepth -= 1
board.backpropagation(p,flipped_pos,color)
# print(p,current)
# alpha-beta 剪枝
if color == self.color:
if current > a:
if current > b:
return p,current
a = current
if current > max:
max = current
action = p
else:
if current < b:
if current < a:
return p,current
b = current
if current < min:
min = current
action = p
# print(color,action,max,min)
if color == self.color:
return action,max
else:
return action,min
def get_move(self, board):
"""
根據目前棋盤狀态擷取最佳落子位置
:param board: 棋盤
:return: action 最佳落子位置, e.g. 'A1'
"""
if self.color == 'X':
player_name = '黑棋'
else:
player_name = '白棋'
print("請等一會,對方 {}-{} 正在思考中...".format(player_name, self.color))
# -----------------請實作你的算法代碼--------------------------------------
action_list = list(board.get_legal_actions(self.color))
# action, weight = self.maxMin(board,self.color)
action, weight = self.alphaBeta(board,self.color,-9999999,9999999)
if len(action_list) == 0:
return None
print(action_list)
print(action)
return action
# ------------------------------------------------------------------------