【轉】最短路徑——Dijkstra算法和Floyd算法
标簽(空格分隔): 算法
注意:以下代碼 隻是描述思路,沒有測試過!!
Dijkstra 算法
1.定義概覽
Dijkstra(迪傑斯特拉)算法是典型的單源最短路徑算法,用于計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴充,直到擴充到終點為止。Dijkstra算法是很有代表性的最短路徑算法,在很多專業課程中都作為基本内容有詳細的介紹,如資料結構,圖論,運籌學等等。注意該算法要求圖中不存在負權邊。
問題描述:在無向圖 G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其餘各點的最短路徑。(單源最短路徑)
2.算法描述
1)算法思想:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中隻有一個源點,以後每求得一條最短路徑 , 就将加入到集合S中,直到全部頂點都加入到S中,算法就結束了),第二組為其餘未确定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大于從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點隻包括S中的頂點為中間頂點的目前最短路徑長度。
2)算法步驟:
a.初始時,S隻包含源點,即S={v},v的距離為0。U包含除v外的其他頂點,即:U={其餘頂點},若v與U中頂點u有邊,則
<u,v>
正常有權值,若u不是v的出邊鄰接點,則
<u,v>
權值為∞。
b.從U中選取一個距離v最小的頂點k,把k,加入S中(該標明的距離就是v到k的最短路徑長度)。
c.以k為新考慮的中間點,修改U中各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值的頂點k的距離加上邊上的權。
d.重複步驟b和c直到所有頂點都包含在S中。
執行動畫過程如下圖
3.算法代碼實作:
const int MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];
int A[MAXUNM][MAXNUM];
void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判斷是否已存入該點到S集合中
int n=MAXNUM;
for(int i=1; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用過該點
if(dist[i] == MAXINT)
prev[i] = -1;
else
prev[i] = v0;
}
dist[v0] = 0;
S[v0] = true;
for(int i=2; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出目前未使用的點j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u儲存目前鄰接點中距離最小的點的号碼
mindist = dist[j];
}
S[u] = true;
for(int j=1; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通過新加入的u點路徑找到離v0點更短的路徑
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //記錄前驅頂點
}
}
}
}
4.算法執行個體
先給出一個無向圖
用Dijkstra算法找出以A為起點的單源最短路徑步驟如下
Floyd算法
1.定義概覽
Floyd-Warshall算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種算法,可以正确處理有向圖或負權的最短路徑問題,同時也被用于計算有向圖的傳遞閉包。Floyd-Warshall算法的時間複雜度為O(N3),空間複雜度為O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一個經典的動态規劃算法。用通俗的語言來描述的話,首先我們的目标是尋找從點i到點j的最短路徑。從動态規劃的角度看問題,我們需要為這個目标重新做一個诠釋(這個诠釋正是動态規劃最富創造力的精華所在)
從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若幹個節點k到j。是以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對于每一個節點k,我們檢查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設定Dis(i,j) = Dis(i,k) + Dis(k,j),這樣一來,當我們周遊完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。
2).算法描述:
a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。
b.對于每一對頂點 u 和 v,看看是否存在一個頂點 w 使得從 u 到 w 再到 v 比己知的路徑更短。如果是更新它。
3).Floyd算法過程矩陣的計算—-十字交叉法
方法:兩條線,從左上角開始計算一直到右下角 如下所示
給出矩陣,其中矩陣A是鄰接矩陣,而矩陣Path記錄u,v兩點之間最短路徑所必須經過的點
相應計算方法如下:
最後A3即為所求結果
3.算法代碼實作
typedef struct
{
char vertex[VertexNum]; //頂點表
int edges[VertexNum][VertexNum]; //鄰接矩陣,可看做邊表
int n,e; //圖中目前的頂點數和邊數
}MGraph;
void Floyd(MGraph g)
{
int A[MAXV][MAXV];
int path[MAXV][MAXV];
int i,j,k,n=g.n;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-1;
}
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(A[i][j]>(A[i][k]+A[k][j]))
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
}
算法時間複雜度:O(n3)