天天看點

【轉】最短路徑——Dijkstra算法和Floyd算法

【轉】最短路徑——Dijkstra算法和Floyd算法

标簽(空格分隔): 算法​

​注意:以下代碼 隻是描述思路,沒有測試過!!​

Dijkstra 算法

1.定義概覽

Dijkstra(迪傑斯特拉)算法是典型的單源最短路徑算法,用于計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴充,直到擴充到終點為止。Dijkstra算法是很有代表性的最短路徑算法,在很多專業課程中都作為基本内容有詳細的介紹,如資料結構,圖論,運籌學等等。注意該算法要求圖中不存在負權邊。

問題描述:在無向圖 G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其餘各點的最短路徑。(單源最短路徑)

2.算法描述

1)算法思想:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中隻有一個源點,以後每求得一條最短路徑 , 就将加入到集合S中,直到全部頂點都加入到S中,算法就結束了),第二組為其餘未确定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大于從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點隻包括S中的頂點為中間頂點的目前最短路徑長度。

2)算法步驟:

a.初始時,S隻包含源點,即S={v},v的距離為0。U包含除v外的其他頂點,即:U={其餘頂點},若v與U中頂點u有邊,則​

​<u,v>​

​​正常有權值,若u不是v的出邊鄰接點,則​

​<u,v>​

​權值為∞。

b.從U中選取一個距離v最小的頂點k,把k,加入S中(該標明的距離就是v到k的最短路徑長度)。

c.以k為新考慮的中間點,修改U中各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值的頂點k的距離加上邊上的權。

d.重複步驟b和c直到所有頂點都包含在S中。

執行動畫過程如下圖

【轉】最短路徑——Dijkstra算法和Floyd算法

3.算法代碼實作:

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];

int A[MAXUNM][MAXNUM];

void Dijkstra(int v0)
{
    bool S[MAXNUM];                                  // 判斷是否已存入該點到S集合中
      int n=MAXNUM;
    for(int i=1; i<=n; ++i)
    {
        dist[i] = A[v0][i];
        S[i] = false;                                // 初始都未用過該點
        if(dist[i] == MAXINT)    
              prev[i] = -1;
        else 
              prev[i] = v0;
     }
     dist[v0] = 0;
     S[v0] = true;   
    for(int i=2; i<=n; i++)
    {
         int mindist = MAXINT;
         int u = v0;                               // 找出目前未使用的點j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dist[j]<mindist)
            {
                  u = j;                             // u儲存目前鄰接點中距離最小的點的号碼 
                  mindist = dist[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<MAXINT)
             {
                 if(dist[u] + A[u][j] < dist[j])     //在通過新加入的u點路徑找到離v0點更短的路徑  
                 {
                     dist[j] = dist[u] + A[u][j];    //更新dist 
                     prev[j] = u;                    //記錄前驅頂點 
                  }
              }
     }
}      

4.算法執行個體

先給出一個無向圖

【轉】最短路徑——Dijkstra算法和Floyd算法

用Dijkstra算法找出以A為起點的單源最短路徑步驟如下

【轉】最短路徑——Dijkstra算法和Floyd算法

Floyd算法

1.定義概覽

Floyd-Warshall算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種算法,可以正确處理有向圖或負權的最短路徑問題,同時也被用于計算有向圖的傳遞閉包。Floyd-Warshall算法的時間複雜度為O(N3),空間複雜度為O(N2)。

2.算法描述

1)算法思想原理:

Floyd算法是一個經典的動态規劃算法。用通俗的語言來描述的話,首先我們的目标是尋找從點i到點j的最短路徑。從動态規劃的角度看問題,我們需要為這個目标重新做一個诠釋(這個诠釋正是動态規劃最富創造力的精華所在)

從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若幹個節點k到j。是以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對于每一個節點k,我們檢查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設定Dis(i,j) = Dis(i,k) + Dis(k,j),這樣一來,當我們周遊完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。

2).算法描述:

a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。   

b.對于每一對頂點 u 和 v,看看是否存在一個頂點 w 使得從 u 到 w 再到 v 比己知的路徑更短。如果是更新它。

3).Floyd算法過程矩陣的計算—-十字交叉法

方法:兩條線,從左上角開始計算一直到右下角 如下所示

給出矩陣,其中矩陣A是鄰接矩陣,而矩陣Path記錄u,v兩點之間最短路徑所必須經過的點

【轉】最短路徑——Dijkstra算法和Floyd算法

相應計算方法如下:

【轉】最短路徑——Dijkstra算法和Floyd算法
【轉】最短路徑——Dijkstra算法和Floyd算法

最後A3即為所求結果

3.算法代碼實作

typedef struct          
{        
    char vertex[VertexNum];                                //頂點表         
    int edges[VertexNum][VertexNum];                       //鄰接矩陣,可看做邊表         
    int n,e;                                               //圖中目前的頂點數和邊數         
}MGraph; 

void Floyd(MGraph g)
{
   int A[MAXV][MAXV];
   int path[MAXV][MAXV];
   int i,j,k,n=g.n;
   for(i=0;i<n;i++)
      for(j=0;j<n;j++)
      {   
             A[i][j]=g.edges[i][j];
            path[i][j]=-1;
       }
   for(k=0;k<n;k++)
   { 
        for(i=0;i<n;i++)
           for(j=0;j<n;j++)
               if(A[i][j]>(A[i][k]+A[k][j]))
               {
                     A[i][j]=A[i][k]+A[k][j];
                     path[i][j]=k;
                } 
     } 
}      

算法時間複雜度:O(n3)

繼續閱讀