文章目錄
-
- 軟體包,hadoop使用者準備
- 多台機器無密碼通路(傳檔案需要輸入密碼麻煩)
- zookeeper部署
- hadoop配置
-
- core-site
- hdfs-site
- slaves
- mapred-site
- yarn-site
- zookeeper,hdfs,yarn啟動
-
- 啟動hadoop
- web界面檢視
- 啟動和停止叢集順序
軟體包,hadoop使用者準備
此次實驗使用阿裡雲3台雲主機,指令前沒有機名的是對3台機同時做操作。
對于三台機都建立hadoop使用者作為我們高可用環境的使用者,在software下放軟體包
[[email protected] ~]# useradd hadoop
[[email protected] ~]# su - hadoop
[[email protected] ~]$ mkdir software app data lib source
[[email protected] ~]$ ll
total 20
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 app 放安裝好的軟體
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 data 測試資料
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 lib 依賴包
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 software 軟體安裝包
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 source 源代碼
接下來上傳win下載下傳的軟體包到linux,上傳要用rz指令,安裝這個指令要在root使用者下
[[email protected] ~]# yum install -y lrzsz
[[email protected] ~]$ rz
[[email protected] ~]$ mv hadoop-2.6.0-cdh5.7.0.tar.gz jdk-8u45-linux-x64.gz zookeeper-3.4.6.tar.gz ./software/
其他機器也要上傳這些安裝包,先檢視另外兩台機的ip
[[email protected] ~]$ hostname -i
172.26.165.126
[[email protected] ~]$ hostname
hadoop002
上傳到該ip的root使用者下的目錄裡,如果不指定,就是hadoop(就是取資料源目前操作使用者)
[[email protected] software]$ scp * [email protected]:/home/hadoop/software/
上傳到hadoop003
[[email protected] software]$ scp * [email protected]:/home/hadoop/software/
3台機安裝包所屬的使用者是root,修改為hadoop
exit 退出到root
更改包使用者和使用者組
chown -R hadoop:hadoop /home/hadoop/software/*
清屏
clear
配置etc/hosts
[[email protected] ~]# vi /etc/hosts
配置結果如下圖所示,就是把3台機的ip和機器名的對應關系寫在一個檔案裡。
然後傳給另外兩台機器
[[email protected] ~]# scp /etc/hosts 172.26.165.126:/etc/hosts
[[email protected] ~]# scp /etc/hosts 172.26.165.128:/etc/hosts
多台機器無密碼通路(傳檔案需要輸入密碼麻煩)
su - hadoop
rm -rf .ssh
3台機器生成密鑰檔案
ssh-keygen
進入密鑰路徑
cd .ssh
[[email protected] .ssh]$ ll
total 8
-rw------- 1 hadoop hadoop 1671 Nov 26 18:24 id_rsa
-rw-r--r-- 1 hadoop hadoop 398 Nov 26 18:24 id_rsa.pub
選hadoop001作為主機,把另外兩台機的公鑰檔案發到主機
[[email protected] .ssh]$ scp id_rsa.pub [email protected]:/home/hadoop/.ssh/id_rsa.pub2
[[email protected] .ssh]$ scp id_rsa.pub [email protected]:/home/hadoop/.ssh/id_rsa.pub3
[[email protected] .ssh]$ ll
total 16
-rw------- 1 hadoop hadoop 1671 Nov 26 18:24 id_rsa
-rw-r--r-- 1 hadoop hadoop 398 Nov 26 18:24 id_rsa.pub
-rw-r--r-- 1 root root 398 Nov 26 18:44 id_rsa.pub2
-rw-r--r-- 1 root root 398 Nov 26 18:45 id_rsa.pub3
彙集3機生成一個密鑰
[[email protected] .ssh]$ cat id_rsa.pub >> authorized_keys
[[email protected] .ssh]$ cat id_rsa.pub2 >> authorized_keys
[[email protected] .ssh]$ cat id_rsa.pub3 >> authorized_keys
将生成的這個3機密鑰傳到另外兩台機
[[email protected] .ssh]$ scp authorized_keys [email protected]:/home/hadoop/.ssh/
[[email protected] .ssh]$ scp authorized_keys [email protected]:/home/hadoop/.ssh/
改權限使用者組
exit 退回到root使用者
chown -R hadoop:hadoop /home/hadoop/.ssh/*
chown -R hadoop:hadoop /home/hadoop/.ssh
su - hadoop
cd .ssh
3機密鑰權限修改
chmod 600 authorized_keys
确認互相信任關系,相當于登陸到那台機,執行date
ssh hadoop001 date
ssh hadoop002 date
ssh hadoop003 date
部署java
exit 到root使用者
建立java存放的檔案夾,然後解壓過來
mkdir /usr/java
tar -xzvf /home/hadoop/software/jdk-8u45-linux-x64.gz -C /usr/java
注意要修改解壓後的java使用者和使用者組
[[email protected] java]# chown -R root:root /usr/java/jdk1.8.0_45
配置java環境變量
vi /etc/profile
#env
export JAVA_HOME=/usr/java/jdk1.8.0_45
export PATH=$JAVA_HOME/bin:$PATH
然後
[[email protected] java]# source /etc/profile
[[email protected] java]# java -version
解壓hadoop和zookeeper
su - hadoop
cd software
tar -xzvf hadoop-2.6.0-cdh5.7.0.tar.gz -C ../app/
tar -xzvf zookeeper-3.4.6.tar.gz -C ../app/
修改hadoop目錄
cd 傳回家目錄
vi .bash_profile
export HADOOP_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
export ZOOKEEPER_HOME=/home/hadoop/app/zookeeper-3.4.6
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$PATH
source .bash_profile
看看能不能切,能切說明正常
cd $HADOOP_HOME
建幾個檔案夾
mkdir $HADOOP_HOME/data && mkdir $HADOOP_HOME/logs &&mkdir $HADOOP_HOME/tmp
hadoop臨時目錄
chmod -R 777 $HADOOP_HOME/tmp
zookeeper部署
cd zookeeper-3.4.6/
cd conf
cp zoo_sample.cfg zoo.cfg
[[email protected] conf]$ vi zoo.cfg
dataDir是日志問夾路徑
dataDir=/home/hadoop/app/zookeeper-3.4.6/data
zookeeper叢集所在設定,server.1,1代表id,就是下面myid設定的,2888端口和3888端口,内部通信端口,zookeeper之間互相通路,core-site裡面是外部組建通路端口
server.1=hadoop001:2888:3888
server.2=hadoop002:2888:3888
server.3=hadoop003:2888:3888
[[email protected] conf]$ scp zoo.cfg hadoop002:/home/hadoop/app/zookeeper-3.4.6/conf/
[[email protected] conf]$ scp zoo.cfg hadoop003:/home/hadoop/app/zookeeper-3.4.6/conf/
呼應上面的zoo.cfg,配置機器對應的zookeeperid
cd ../
mkdir data
touch data/myid
注意>左邊要有空格
[[email protected] zookeeper-3.4.6]$ echo 1 >data/myid
[[email protected] zookeeper-3.4.6]$ echo 2 >data/myid
[[email protected] zookeeper-3.4.6]$ echo 3 >data/myid
hadoop配置
cd hadoop-2.6.0-cdh5.7.0/etc/hadoop
hadoop依賴的java環境
[[email protected] hadoop]$ vi hadoop-env.sh
export JAVA_HOME=/usr/java/jdk1.8.0_45
[[email protected] hadoop]$ scp hadoop-env.sh hadoop002:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop
[[email protected] hadoop]$ scp hadoop-env.sh hadoop003:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop
先删了
rm -f slaves core-site.xml hdfs-site.xml yarn-site.xml
然後都rz 5個檔案,檔案配置如下
core-site
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" ?>
<configuration>
<!--Yarn 需要使用 fs.defaultFS 指定NameNode URI -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ruozeclusterg5</value>
</property>
<!--==============================Trash機制======================================= -->
<property>
<!--資源回收筒,多長時間建立CheckPoint NameNode截點上運作的CheckPointer 從Current檔案夾建立CheckPoint;預設:0 由fs.trash.interval項指定 -->
<name>fs.trash.checkpoint.interval</name>
<value>0</value>
</property>
<property>
<!--資源回收筒,多少分鐘.Trash下的CheckPoint目錄會被删除,該配置伺服器設定優先級大于用戶端,預設:0 不删除 -->
<name>fs.trash.interval</name>
<value>1440</value>
</property>
<!--指定hadoop臨時目錄, hadoop.tmp.dir 是hadoop檔案系統依賴的基礎配置,很多路徑都依賴它。如果hdfs-site.xml中不配 置namenode和datanode的存放位置,預設就放在這>個路徑中 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/tmp</value>
</property>
<!-- 指定zookeeper位址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
</property>
<!--指定ZooKeeper逾時間隔,機關毫秒 -->
<property>
<name>ha.zookeeper.session-timeout.ms</name>
<value>2000</value>
</property>
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
org.apache.hadoop.io.compress.SnappyCodec
</value>
</property>
</configuration>
hdfs-site
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" ?>
<configuration>
<!--HDFS超級使用者 -->
<property>
<name>dfs.permissions.superusergroup</name>
<value>hadoop</value>
</property>
<!--開啟web hdfs -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/name</value>
<description> namenode 存放name table(fsimage)本地目錄(需要修改)</description>
</property>
<property>
<name>dfs.namenode.edits.dir</name>
<value>${dfs.namenode.name.dir}</value>
<description>namenode存放 transaction file(edits)本地目錄(需要修改)</description>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/data</value>
<description>datanode存放block本地目錄(需要修改)</description>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!-- 塊大小256M (預設128M) -->
<property>
<name>dfs.blocksize</name>
<value>268435456</value>
</property>
<!--======================================================================= -->
<!--HDFS高可用配置 -->
<!--指定hdfs的nameservice為ruozeclusterg5,需要和core-site.xml中的保持一緻 -->
<property>
<name>dfs.nameservices</name>
<value>ruozeclusterg5</value>
</property>
<property>
<!--設定NameNode IDs 此版本最大隻支援兩個NameNode -->
<name>dfs.ha.namenodes.ruozeclusterg5</name>
<value>nn1,nn2</value>
</property>
<!-- Hdfs HA: dfs.namenode.rpc-address.[nameservice ID] rpc 通信位址 -->
<property>
<name>dfs.namenode.rpc-address.ruozeclusterg5.nn1</name>
<value>hadoop001:8020</value>
</property>
<property>
<name>dfs.namenode.rpc-address.ruozeclusterg5.nn2</name>
<value>hadoop002:8020</value>
</property>
<!-- Hdfs HA: dfs.namenode.http-address.[nameservice ID] http 通信位址 -->
<property>
<name>dfs.namenode.http-address.ruozeclusterg5.nn1</name>
<value>hadoop001:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.ruozeclusterg5.nn2</name>
<value>hadoop002:50070</value>
</property>
<!--==================Namenode editlog同步 ============================================ -->
<!--保證資料恢複 -->
<property>
<name>dfs.journalnode.http-address</name>
<value>0.0.0.0:8480</value>
</property>
<property>
<name>dfs.journalnode.rpc-address</name>
<value>0.0.0.0:8485</value>
</property>
<property>
<!--設定JournalNode伺服器位址,QuorumJournalManager 用于存儲editlog -->
<!--格式:qjournal://<host1:port1>;<host2:port2>;<host3:port3>/<journalId> 端口同journalnode.rpc-address -->
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop001:8485;hadoop002:8485;hadoop003:8485/ruozeclusterg5</value>
</property>
<property>
<!--JournalNode存放資料位址 -->
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/jn</value>
</property>
<!--==================DataNode editlog同步 ============================================ -->
<property>
<!--DataNode,Client連接配接Namenode識别選擇Active NameNode政策 -->
<!-- 配置失敗自動切換實作方式 -->
<name>dfs.client.failover.proxy.provider.ruozeclusterg5</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!--==================Namenode fencing:=============================================== -->
<!--Failover後防止停掉的Namenode啟動,造成兩個服務 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<property>
<!--多少milliseconds 認為fencing失敗 -->
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
<!--==================NameNode auto failover base ZKFC and Zookeeper====================== -->
<!--開啟基于Zookeeper -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--動态許可datanode連接配接namenode清單 -->
<property>
<name>dfs.hosts</name>
<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop/slaves</value>
</property>
</configuration>
slaves
hadoop001
hadoop002
hadoop003
yarn方面
mapred-site
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" ?>
<configuration>
<!-- 配置 MapReduce Applications -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- JobHistory Server ============================================================== -->
<!-- 配置 MapReduce JobHistory Server 位址 ,預設端口10020 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop001:10020</value>
</property>
<!-- 配置 MapReduce JobHistory Server web ui 位址, 預設端口19888 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop001:19888</value>
</property>
<!-- 配置 Map段輸出的壓縮,snappy-->
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
</configuration>
yarn-site
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" target="_blank" rel="external nofollow" ?>
<configuration>
<!-- nodemanager 配置 ================================================= -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:23344</value>
<description>Address where the localizer IPC is.</description>
</property>
<property>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:23999</value>
<description>NM Webapp address.</description>
</property>
<!-- HA 配置 =============================================================== -->
<!-- Resource Manager Configs -->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 使嵌入式自動故障轉移。HA環境啟動,與 ZKRMStateStore 配合 處理fencing -->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
</property>
<!-- 叢集名稱,確定HA選舉時對應的叢集 -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--這裡RM主備結點需要單獨指定,(可選)
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm2</value>
</property>
-->
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<!-- ZKRMStateStore 配置 -->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
</property>
<!-- Client通路RM的RPC位址 (applications manager interface) -->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>hadoop001:23140</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>hadoop002:23140</value>
</property>
<!-- AM通路RM的RPC位址(scheduler interface) -->
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>hadoop001:23130</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>hadoop002:23130</value>
</property>
<!-- RM admin interface -->
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>hadoop001:23141</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>hadoop002:23141</value>
</property>
<!--NM通路RM的RPC端口 -->
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>hadoop001:23125</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>hadoop002:23125</value>
</property>
<!-- RM web application 位址 -->
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>hadoop001:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>hadoop002:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>hadoop001:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>hadoop002:23189</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop001:19888/jobhistory/logs</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
<discription>單個任務可申請最少記憶體,預設1024MB</discription>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
<discription>單個任務可申請最大記憶體,預設8192MB</discription>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>2</value>
</property>
</configuration>
zookeeper,hdfs,yarn啟動
先啟動zookeeper
$ZOOKEEPER_HOME/bin/zkServer.sh start
zkServer.sh status
如果是兩個follower,1個leader,則成功
啟動journalnode
cd app/hadoop-2.6.0-cdh5.7.0
sbin/hadoop-daemon.sh start journalnode
[[email protected] hadoop-2.6.0-cdh5.7.0]$ jps
2899 JournalNode
2950 Jps
2782 QuorumPeerMain 這是zookeeper程序名
啟動hadoop
第一次啟動先格式化一下,注意兩個namenode隻選取一台做hadoop格式化
[[email protected] hadoop-2.6.0-cdh5.7.0]$ hadoop namenode -format
然後将格式化後的檔案(datanode和namenode所在)覆寫第二個namenode所在機器,同步namenode中繼資料
[[email protected] hadoop-2.6.0-cdh5.7.0]$ scp -r data hadoop002:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
初始化zkfc,隻在hadoop001做,注意,因為一個命名空間裡面包括了hadoop001和hadoop002的hdfs位址
[[email protected] hadoop-2.6.0-cdh5.7.0]$ hdfs zkfc -formatZK
Successfully created /hadoop-ha/ruozeclusterg5 in ZK.
啟動hdfs
[[email protected] hadoop-2.6.0-cdh5.7.0]$ start-dfs.sh
報錯,slaves是dos形式,适用于win,要轉格式
[[email protected] hadoop-2.6.0-cdh5.7.0]$ stop-dfs.sh
安裝轉格式的插件
yum install -y dos2unix
dos2unix slaves
注意啟動順序
[[email protected] hadoop]$ start-dfs.sh
18/11/27 10:18:36 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [hadoop001 hadoop002]
hadoop001: starting namenode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-namenode-hadoop001.out
hadoop002: starting namenode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-namenode-hadoop002.out
hadoop002: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop002.out
hadoop001: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop001.out
hadoop003: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop003.out
Starting journal nodes [hadoop001 hadoop002 hadoop003]
hadoop002: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop002.out
hadoop001: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop001.out
hadoop003: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop003.out
18/11/27 10:18:53 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting ZK Failover Controllers on NN hosts [hadoop001 hadoop002]
hadoop002: starting zkfc, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-zkfc-hadoop002.out
hadoop001: starting zkfc, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-zkfc-hadoop001.out
啟動yarn
[[email protected] hadoop]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-resourcemanager-hadoop001.out
hadoop002: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop002.out
hadoop003: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop003.out
hadoop001: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop001.out
第二個resourcemanager需要手動啟動
[[email protected] hadoop-2.6.0-cdh5.7.0]$ yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-resourcemanager-hadoop002.out
web界面檢視
先配置雲主機出入方向的安全組規則
如此這般,便可在網頁通路
通路公網ip
hadoop
http://47.92.250.235:50070
yarn
http://47.92.250.235:50070:8088 (active)
http://47.92.250.236:50070:8088/cluster/cluster(standby)
啟動jobhistory,yarn存儲的記錄有限
[[email protected] hadoop]$ $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start historyserver
jobhistory在端口号19888
啟動和停止叢集順序
啟動
zkServer.sh start
[[email protected] sbin]# start-dfs.sh
[[email protected] sbin]# start-yarn.sh
[[email protected] sbin]# yarn-daemon.sh start resourcemanager
[[email protected] ~]# $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start historyserver
停止
[[email protected] sbin]# stop-yarn.sh
[[email protected] sbin]# yarn-daemon.sh stop resourcemanager
[[email protected] sbin]# stop-dfs.sh
zkServer.sh stop