函數極限的四則運算
若 ∃A,B∈R,limf(x)=A,limg(x)=B, 則
1) limf(x)+g(x)=A+B
2) limf(x)⋅g(x)=A⋅B
3) limf(x)g(x)=AB(B≠0)
證明
下面隻證明 limx→x0 情況下的正确性, limx→+∞,limx→−∞,limx→∞ 情況下的證明與之相似。
∀ε>0,∃δ>0,∀x∈U˚(x0,δ),|f(x)−A|<ε,|g(x)−B|<ε.
1) ∀x∈U˚(x0,δ),|(f(x)+g(x))−(A+B)|
=|(f(x)−A)+(g(x)−B)|
≤|f(x)−A|+|g(x)−B|
<ε+ε
=2ε
2) ∃M>0,∃η>0,∀x∈U˚(x0,η),|f(x)|<M.
∀x∈U˚(x0,min(δ,η)),|f(x)⋅g(x)−A⋅B|
=|(f|+| A )g(x)+A⋅g(x)−A⋅B|
=|(f(x)−A)g(x)+A⋅(g(x)−B)|
≤|(f(x)−A)g(x)|+|A⋅(g(x)−B)|
≤Mε+|A|ε
=(M+|A|)ε
3) ∃m>0,∃η>0,∀x∈U˚(x0,η),|g(x)|>m.
∀x∈U˚(x0,min(δ,η)),|f(x)g(x)−AB|
=|Bf(x)−Ag(x)Bg(x)|
=1|B|⋅1|g(x)|⋅|B(f(x)−A)−A(g(x)−B)|
≤1|B|⋅1|g(x)|⋅(|B(f(x)−A)|+|A(g(x)−B)|)
≤1|B|⋅1m⋅(|B|ε+|A|ε)
=|A|+|B||Bm|⋅ε
複合函數極限的性質
若 ∃x0,y0,A∈R,limx→x0g(x)=y0,limy→y0f(y)=A, ⇒∀%3x-Span-817" style="width: 17.069em; display: inline-block;">∃ζ>0,∀x∈U˚(x0,ζ),g(x)≠y0,
2) f(y0)=A
則 limx→x0(f∘g)(x)=A
證明:
∀ε>0,∃η>0,∀y∈U˚(y0,η),|f(y)−A|<ε
1) ∃δ∈(0,ζ),∀x∈U˚(x0,δ ) ,|g(x)−y0|<η
∀x∈U˚(x0,ζ),g(x)≠y0
⇒∀x∈U˚(x0,δ),0<|g(x)−y0|<η
⇒g(x)∈U˚(y0,η)⇒|f[g(x)]−A|<ε
⇒|(f∘g)(x)−A|<ε
⇒limx→x0(f∘g)(x)=A
2) ∃δ>0,∀x∈U˚(x0,δ),|g(x)−y0|<η⇒g(x)=y0 或 0<|g(x)−y0|<η
2.1) g(x)=y0 時, |f[g(x)]−A|=|f(y0)−A|=0<ε
2.2) 0<|g(x)−y0|<η 時, g(x)∈U˚(y0,η)⇒|f[g(x)]−A|<ε
2.1), 2.2) ⇒∀x∈U˚(x0,δ),|f[g(x)]−A|<ε, 同理可得 limx→x0(f∘g)(x)=A