卷積與反卷積的直覺感受:
卷積:
反卷積:
特别說明,此處分析的反卷積主要針對 caffe中DeconvolutionLayer類别來說。
反向傳播分析,參考部落格:
https://grzegorzgwardys.wordpress.com/2016/04/22/8/
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://www.cnblogs.com/tornadomeet/p/3468450.html
http://blog.csdn.net/ck1798333105/article/details/52369122
http://www.cnblogs.com/pinard/p/6494810.html
反向傳播結論: L層局部梯度 δ =L+1層局部梯度*(卷積)核的轉秩
卷積核梯度 ▽W=輸入*(卷積)本層局部梯度
卷積及反向傳播
要想了解反卷積就要首先了解卷積的反向傳播方式,因為他們之間有着千絲萬縷的聯系。
卷積之反向傳播
見代碼如下:
/
// 正向傳播
/
template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[]->cpu_data();
for (int i = ; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = ; n < this->num_; ++n) {
///forward_cpu_gemm 實作卷積運算
// bottom_data*weight=top_data
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}
/*****************************************************************
反向傳播
******************************************************************/
template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[]->cpu_data();
Dtype* weight_diff = this->blobs_[]->mutable_cpu_diff();
for (int i = ; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[]) {
Dtype* bias_diff = this->blobs_[]->mutable_cpu_diff();
for (int n = ; n < this->num_; ++n) {
// 計算▽b,偏移量梯度
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[] || propagate_down[i]) {
for (int n = ; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[]) {
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_, //計算 ▽W ,權重梯度
top_diff + n * this->top_dim_, weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
重點,backward_cpu_gemm 實作矩陣局部梯度域反向計算
top_diff*weight^T(轉制)=bottom_diff 實質上還是卷積運算
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight, //計算局部梯度δ
bottom_diff + n * this->bottom_dim_);
}
}
}
}
}
從convlayer 與 deconvlayer 對比來看,實作的功能是互逆的。
特别是兩者在前向運算與後向計算局部梯度 互相對偶(使用同樣的函數),而偏移量的計算方式一緻。