1:什麼是決策樹
顧名思義:決策樹就是根據已有的條件進行決策進而産生的一棵樹。
比如,這就是一顆決策樹,根據不同的取值決定不同的走向
2、那麼如何根據現有的屬性來決定誰是第一個節點,誰是第二個節點呢,這裡就要用到ID3算法了
Id3 算法大家可以搜一下,就是利用資訊熵來計算的,根據資訊增益每次找到最合适的來當樹根,這樣,就會更符合實際情況
3、有了建樹的方法,接下來就是進行建樹,建樹是遞歸建立的,代碼在底下,大家可以自己了解一下
4:最後利用輸入訓練資料進行訓練,然後對測試資料進行樹上的查找,進而進行預測
import numpy
from math import log
import operator
import treePlotter
# 計算熵的函數
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
# 建立資料集
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers']
#change to discrete values
return dataSet, labels
# 測試
# dataSet , labels =createDataSet()
# ans = calcShannonEnt(dataSet)
# 熵越高,混合的資料就越多
# print(ans)
# 劃分資料集,沒有計算熵,直接分類
def splitDataSet(dataSet, axis, value):
# 參數: 待劃分的資料集,劃分資料集的特征的列,按照該列進行分類的值,如果該列中有符合這個value的值,那麼就會被分為一類
# 注意:python 語言在函數中傳遞的是清單的引用,在函數内部對清單對象的修改,
# 将會直接影響清單對象,是以,這裡重新聲明了一個清單
retDataSet = []
# dataSet中的資料也是清單
for featVec in dataSet:
# 講符合特征的資料抽取出來
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
# 通過計算熵來進行分類,調用上面計算熵的函數和樸素分類的算法
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
uniqueVals = set(featList) #get a set of unique values
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
# 遞歸構造決策樹,ID3 算法
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
# 劃分資料集測試
dataSet , labels =createDataSet()
# ans = splitDataSet(dataSet,0,0) # 對dataset進行分類,按照地0列,值為0的進行歸類
# print(ans)
# ans = chooseBestFeatureToSplit(dataSet)
# print("對結果影響最大的一列是:"+str(ans))
# 構造決策樹
myTree = createTree(dataSet,labels)
# print(myTree)
# 使用matplotlib 繪制樹
##################### 省略
# 測試算法:使用決策樹進行分類
# 使用決策樹的分類函數
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel
# 使用pickle 子產品存儲決策樹
def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'w')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
本來想利用決策樹優化手寫數字的識别,但是暫時沒寫出來。。。還是不太回寫。。。後期再發吧。。
參考文獻-machine learning -peter harrington