easy_RSA
題目:
import sympy
from gmpy2 import gcd, invert
from random import randint
from Crypto.Util.number import getPrime, isPrime, getRandomNBitInteger, bytes_to_long, long_to_bytes
import base64
from zlib import *
flag = b"MRCTF{XXXX}"
base = 65537
def gen_prime(N):
A = 0
while 1:
A = getPrime(N)
if A % 8 == 5:
break
return A
def gen_p():
p = getPrime(1024)
q = getPrime(1024)
assert (p < q)
n = p * q
print("P_n = ", n)
F_n = (p - 1) * (q - 1)
print("P_F_n = ", F_n)
factor2 = 2021 * p + 2020 * q
if factor2 < 0:
factor2 = (-1) * factor2
return sympy.nextprime(factor2)
def gen_q():
p = getPrime(1024)
q = getPrime(1024)
assert (p < q)
n = p * q
print("Q_n = ", n)
e = getRandomNBitInteger(53)
F_n = (p - 1) * (q - 1)
while gcd(e, F_n) != 1:
e = getRandomNBitInteger(53)
d = invert(e, F_n)
print("Q_E_D = ", e * d)
factor2 = 2021 * p - 2020 * q
if factor2 < 0:
factor2 = (-1) * factor2
return sympy.nextprime(factor2)
if __name__ == "__main__":
_E = base
_P = gen_p()
_Q = gen_q()
assert (gcd(_E, (_P - 1) * (_Q - 1)) == 1)
_M = bytes_to_long(flag)
_C = pow(_M, _E, _P * _Q)
print("Ciphertext = ", _C)
'''
P_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024336556028267742021320891681762543660468484018686865891073110757394154024833552558863671537491089957038648328973790692356014778420333896705595252711514117478072828880198506187667924020260600124717243067420876363980538994101929437978668709128652587073901337310278665778299513763593234951137512120572797739181693
P_F_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024099427363967321110127562039879018616082926935567951378185280882426903064598376668106616694623540074057210432790309571018778281723710994930151635857933293394780142192586806292968028305922173313521186946635709194350912242693822450297748434301924950358561859804256788098033426537956252964976682327991427626735740
Q_n = 20714298338160449749545360743688018842877274054540852096459485283936802341271363766157976112525034004319938054034934880860956966585051684483662535780621673316774842614701726445870630109196016676725183412879870463432277629916669130494040403733295593655306104176367902352484367520262917943100467697540593925707162162616635533550262718808746254599456286578409187895171015796991910123804529825519519278388910483133813330902530160448972926096083990208243274548561238253002789474920730760001104048093295680593033327818821255300893423412192265814418546134015557579236219461780344469127987669565138930308525189944897421753947
Q_E_D = 100772079222298134586116156850742817855408127716962891929259868746672572602333918958075582671752493618259518286336122772703330183037221105058298653490794337885098499073583821832532798309513538383175233429533467348390389323225198805294950484802068148590902907221150968539067980432831310376368202773212266320112670699737501054831646286585142281419237572222713975646843555024731855688573834108711874406149540078253774349708158063055754932812675786123700768288048445326199880983717504538825498103789304873682191053050366806825802602658674268440844577955499368404019114913934477160428428662847012289516655310680119638600315228284298935201
Ciphertext = 40855937355228438525361161524441274634175356845950884889338630813182607485910094677909779126550263304194796000904384775495000943424070396334435810126536165332565417336797036611773382728344687175253081047586602838685027428292621557914514629024324794275772522013126464926990620140406412999485728750385876868115091735425577555027394033416643032644774339644654011686716639760512353355719065795222201167219831780961308225780478482467294410828543488412258764446494815238766185728454416691898859462532083437213793104823759147317613637881419787581920745151430394526712790608442960106537539121880514269830696341737507717448946962021
'''
gen_p()
函數中給出了
n
和
φ(n)
,是以可以根據(圖檔參考https://mp.weixin.qq.com/s/TEnuxcUV1SHiW4VOWQK9eQ)計算出
_P
;
gen_q()
函數中給出了
e*d
和
n
,就可以分解出n得到p、q,參考RSA-已知ed分解n,進而得到
_Q
接下來就是正常RSA操作
解題
# -*- coding: UTF-8 -*-
import gmpy2
import sympy
import random
from Crypto.Util.number import *
base = 65537
P_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024336556028267742021320891681762543660468484018686865891073110757394154024833552558863671537491089957038648328973790692356014778420333896705595252711514117478072828880198506187667924020260600124717243067420876363980538994101929437978668709128652587073901337310278665778299513763593234951137512120572797739181693
P_F_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024099427363967321110127562039879018616082926935567951378185280882426903064598376668106616694623540074057210432790309571018778281723710994930151635857933293394780142192586806292968028305922173313521186946635709194350912242693822450297748434301924950358561859804256788098033426537956252964976682327991427626735740
Q_n = 20714298338160449749545360743688018842877274054540852096459485283936802341271363766157976112525034004319938054034934880860956966585051684483662535780621673316774842614701726445870630109196016676725183412879870463432277629916669130494040403733295593655306104176367902352484367520262917943100467697540593925707162162616635533550262718808746254599456286578409187895171015796991910123804529825519519278388910483133813330902530160448972926096083990208243274548561238253002789474920730760001104048093295680593033327818821255300893423412192265814418546134015557579236219461780344469127987669565138930308525189944897421753947
Q_E_D = 100772079222298134586116156850742817855408127716962891929259868746672572602333918958075582671752493618259518286336122772703330183037221105058298653490794337885098499073583821832532798309513538383175233429533467348390389323225198805294950484802068148590902907221150968539067980432831310376368202773212266320112670699737501054831646286585142281419237572222713975646843555024731855688573834108711874406149540078253774349708158063055754932812675786123700768288048445326199880983717504538825498103789304873682191053050366806825802602658674268440844577955499368404019114913934477160428428662847012289516655310680119638600315228284298935201
Ciphertext = 40855937355228438525361161524441274634175356845950884889338630813182607485910094677909779126550263304194796000904384775495000943424070396334435810126536165332565417336797036611773382728344687175253081047586602838685027428292621557914514629024324794275772522013126464926990620140406412999485728750385876868115091735425577555027394033416643032644774339644654011686716639760512353355719065795222201167219831780961308225780478482467294410828543488412258764446494815238766185728454416691898859462532083437213793104823759147317613637881419787581920745151430394526712790608442960106537539121880514269830696341737507717448946962021
paddq = P_n-P_F_n+1
psubq = gmpy2.iroot((paddq**2-4*P_n),2)[0]
q = (paddq+psubq)//2
p = P_n//q
_P=sympy.nextprime(2021 * p + 2020 * q)
#print _P
def getpq(ed, n):
k = ed - 1
while True:
g = random.randint(2, n-1)
t = k
while True:
if t % 2 != 0:
break
t /= 2
x = pow(g, t, n)
if x > 1 and gmpy2.gcd(x-1, n) > 1:
p = gmpy2.gcd(x-1, n)
return (p, n/p)
_p,_q=getpq(Q_E_D,Q_n)
_Q = sympy.nextprime((2021 * _p - 2020 * _q)*(-1))
#print _Q
phi = (_P-1)*(_Q-1)
d = gmpy2.invert(base,phi)
m = pow(Ciphertext,d,_P*_Q)
flag = long_to_bytes(m)
print flag
babyRSA
題目:
import sympy
import random
from gmpy2 import gcd, invert
from Crypto.Util.number import getPrime, isPrime, getRandomNBitInteger, bytes_to_long, long_to_bytes
from z3 import *
flag = b"MRCTF{xxxx}"
base = 65537
def GCD(A):
B = 1
for i in range(1, len(A)):
B = gcd(A[i-1], A[i])
return B
def gen_p():
P = [0 for i in range(17)]
P[0] = getPrime(128)
for i in range(1, 17):
P[i] = sympy.nextprime(P[i-1])
print("P_p :", P[9])
n = 1
for i in range(17):
n *= P[i]
p = getPrime(1024)
factor = pow(p, base, n)
print("P_factor :", factor)
return sympy.nextprime(p)
def gen_q():
sub_Q = getPrime(1024)
Q_1 = getPrime(1024)
Q_2 = getPrime(1024)
Q = sub_Q ** Q_2 % Q_1
print("Q_1: ", Q_1)
print("Q_2: ", Q_2)
print("sub_Q: ", sub_Q)
return sympy.nextprime(Q)
if __name__ == "__main__":
_E = base
_P = gen_p()
_Q = gen_q()
assert (gcd(_E, (_P - 1) * (_Q - 1)) == 1)
_M = bytes_to_long(flag)
_C = pow(_M, _E, _P * _Q)
print("Ciphertext = ", _C)
'''
P_p : 206027926847308612719677572554991143421
P_factor : 213671742765908980787116579976289600595864704574134469173111790965233629909513884704158446946409910475727584342641848597858942209151114627306286393390259700239698869487469080881267182803062488043469138252786381822646126962323295676431679988602406971858136496624861228526070581338082202663895710929460596143281673761666804565161435963957655012011051936180536581488499059517946308650135300428672486819645279969693519039407892941672784362868653243632727928279698588177694171797254644864554162848696210763681197279758130811723700154618280764123396312330032986093579531909363210692564988076206283296967165522152288770019720928264542910922693728918198338839
Q_1: 103766439849465588084625049495793857634556517064563488433148224524638105971161051763127718438062862548184814747601299494052813662851459740127499557785398714481909461631996020048315790167967699932967974484481209879664173009585231469785141628982021847883945871201430155071257803163523612863113967495969578605521
Q_2: 151010734276916939790591461278981486442548035032350797306496105136358723586953123484087860176438629843688462671681777513652947555325607414858514566053513243083627810686084890261120641161987614435114887565491866120507844566210561620503961205851409386041194326728437073995372322433035153519757017396063066469743
sub_Q: 168992529793593315757895995101430241994953638330919314800130536809801824971112039572562389449584350643924391984800978193707795909956472992631004290479273525116959461856227262232600089176950810729475058260332177626961286009876630340945093629959302803189668904123890991069113826241497783666995751391361028949651
Ciphertext = 1709187240516367141460862187749451047644094885791761673574674330840842792189795049968394122216854491757922647656430908587059997070488674220330847871811836724541907666983042376216411561826640060734307013458794925025684062804589439843027290282034999617915124231838524593607080377300985152179828199569474241678651559771763395596697140206072537688129790126472053987391538280007082203006348029125729650207661362371936196789562658458778312533505938858959644541233578654340925901963957980047639114170033936570060250438906130591377904182111622236567507022711176457301476543461600524993045300728432815672077399879668276471832
'''
同樣是兩個分别生成p和q的函數,分别計算出_P和_Q解RSA就行了
先來看函數
gen_p()
,先是生成了17個
連續
的素數,并且給出了第十個素數,我們可以往前判斷每個奇數,找出
P_p
前面9個素數并得到
p[0]
,繼而輕松找到了所有素數,
n
為17個小素數相乘,
φ(n)
是每個小素數-1再相乘得到,然後進行一次正常的
RSA
求解得到
_P
;
接着看函數
gen_q
,
_Q
基本是白給,需要注意的就是
Q = sub_Q ** Q_2 % Q_1
,大數乘方的結果再取模效率太低,應改為快速幂取模算法
Q = pow(sub_Q,Q_2,Q_1)
解題
import sympy
import random
from gmpy2 import *
from Crypto.Util.number import getPrime, isPrime, getRandomNBitInteger, bytes_to_long, long_to_bytes
base = 65537
P_p = 206027926847308612719677572554991143421
P_factor = 213671742765908980787116579976289600595864704574134469173111790965233629909513884704158446946409910475727584342641848597858942209151114627306286393390259700239698869487469080881267182803062488043469138252786381822646126962323295676431679988602406971858136496624861228526070581338082202663895710929460596143281673761666804565161435963957655012011051936180536581488499059517946308650135300428672486819645279969693519039407892941672784362868653243632727928279698588177694171797254644864554162848696210763681197279758130811723700154618280764123396312330032986093579531909363210692564988076206283296967165522152288770019720928264542910922693728918198338839
Q_1= 103766439849465588084625049495793857634556517064563488433148224524638105971161051763127718438062862548184814747601299494052813662851459740127499557785398714481909461631996020048315790167967699932967974484481209879664173009585231469785141628982021847883945871201430155071257803163523612863113967495969578605521
Q_2= 151010734276916939790591461278981486442548035032350797306496105136358723586953123484087860176438629843688462671681777513652947555325607414858514566053513243083627810686084890261120641161987614435114887565491866120507844566210561620503961205851409386041194326728437073995372322433035153519757017396063066469743
sub_Q= 168992529793593315757895995101430241994953638330919314800130536809801824971112039572562389449584350643924391984800978193707795909956472992631004290479273525116959461856227262232600089176950810729475058260332177626961286009876630340945093629959302803189668904123890991069113826241497783666995751391361028949651
Ciphertext = 1709187240516367141460862187749451047644094885791761673574674330840842792189795049968394122216854491757922647656430908587059997070488674220330847871811836724541907666983042376216411561826640060734307013458794925025684062804589439843027290282034999617915124231838524593607080377300985152179828199569474241678651559771763395596697140206072537688129790126472053987391538280007082203006348029125729650207661362371936196789562658458778312533505938858959644541233578654340925901963957980047639114170033936570060250438906130591377904182111622236567507022711176457301476543461600524993045300728432815672077399879668276471832
k=0
while k<9:
P_p-=2
if(isPrime(P_p)):
k+=1
#P_p=206027926847308612719677572554991143421
p=[0 for i in range(17)]
p[0]=P_p
for i in range(1,17):
p[i]=next_prime(p[i-1])
n=1
phi=1
for i in range(17):
phi *=p[i]-1
n *= p[i]
P = pow(P_factor,invert(base,phi),n)
_P = next_prime(P)
Q = pow(sub_Q,Q_2,Q_1)
_Q = next_prime(Q)
_phi = (_P-1)*(_Q-1)
_d = invert(base,_phi)
m = pow(Ciphertext,_d,_P*_Q)
flag = long_to_bytes(m)
print flag
#MRCTF{[email protected][email protected]_qu3st10n}