Description
You are given a positive integer n , written without leading zeroes (for example, the number 04 is incorrect).
In one operation you can delete any digit of the given integer so that the result remains a positive integer without leading zeros.
Determine the minimum number of operations that you need to consistently apply to the given integer n to make from it the square of some positive integer or report that it is impossible.
An integer x is the square of some positive integer if and only if x = y2 for some positive integer y .
Input
The first line contains a single integer n ( 1≤n≤2⋅10 9 ). The number is given without leading zeroes.
Output
If it is impossible to make the square of some positive integer from n, print -1. In the other case, print the minimal number of operations required to do it.
Examples
Input |
---|
8314 |
Output |
2 |
Input |
---|
625 |
Output |
Input |
---|
333 |
Output |
-1 |
Note
In the first example we should delete from 8314 the digits 3 and 4. After that 8314 become equals to 81 , which is the square of the integer 9 .
In the second example the given 625 is the square of the integer 25 , so you should not delete anything.
In the third example it is impossible to make the square from 333 , so the answer is −1 .
參考了下面的部落格
https://www.cnblogs.com/a249189046/p/8821300.html
題意:給一個整數,每次删除一個位,要求删除後的首位不能是0,問多少次操作以後變為平方數。
思路:百度了一下開方函數的複雜度,沒有看的很懂但是其中有一個說法是:
- 取對數->乘0.5->取指數
其中第一步和第三步可以用硬體實作,這樣下來複雜度就是O(1)的,是以用開方函數來檢查一個整數是否是平方數是可以的。
由于輸入最多有10位,搜尋起來最壞的情況要做10!次,這是不能接受的,這是由于重複搜尋導緻的,是以使用set記錄搜尋過的數字,把次數降到了2^10次(巨大的優化)
#include<stdio.h>
#include<math.h>
#include<queue>
#include<set>
using std::queue;
using std::set;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define mabs(x) ((x)>0?(x):(0-(x)))
#define N_max 44722
int n;
int a10[N_max];
queue<int> a;
set<int> b;
int r(int x, int i) {
return x / a10[i + ]*a10[i] + x%a10[i];
}
int bfs(int len) {
int next,temp;
for (int k = ; k < len; ++k) {
int t = a.size(), x;
for (int i = ; i < t; ++i) {
//周遊上一層産生的數
x = a.front(); a.pop();
for (int q = ; q < len - k; ++q) {//搜尋去掉每一位後産生的數
if (q>&&q ==len-k- && ((x%a10[q]) / a10[q - ]) == )
//判斷是否在首位以及同時第二位是否是0
continue;
next = r(x, q);//生成下一個數
if (next <= )continue;//特判
//利用set檢查該數是否出現過
if (b.find(next) == b.end())b.insert(next);
else { continue; }
//利用sqrt檢查該數是否是平方數
temp = sqrt(next);
if (temp*temp == next)
return k;
//入隊列,為下一層bfs做準備
a.push(next);
}
}
}
}
int main() {
scanf("%d", &n);
int len = ,temp;
temp = sqrt(n);
if (temp*temp == n) {
printf("0"); return ;
}
//計算位數,儲存在len裡
for (temp = n; temp > ; ++len)temp /= ;
//計算10, 100, 1000,...友善取模
a10[] = ;
for (int i = ; i < ; ++i) {
a10[i] = a10[i - ] * ;
}
a.push(n);
temp = + bfs(len);
if(temp<len)printf("%d",temp);
else printf("-1");
}