按要求轉載自網路冷眼
作者 | Robbie Allen
機器學習(Machine Learning)有不少有用的流程圖和機器學習算法表。 這裡隻包括所發現的最全面的速查表。
神經網絡架構(NeuralNetwork Architectures)
來源:http://www.asimovinstitute.org/neural-network-zoo/
Microsoft Azure算法流程圖(Microsoft AzureAlgorithm Flowchart)
來源:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet
SAS算法流程圖(SAS Algorithm Flowchart)
來源:http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
算法總結(AlgorithmSummary)
來源:http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
來源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/
算法優缺點(AlgorithmPro/Con)
來源:https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend
Python
當然Python有很多線上資源。 對于本節隻包括所遇到的最好的速查表。
算法(Algorithms)
來源:https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
Python基礎(Python Basics)
來源:http://datasciencefree.com/python.pdf
來源:https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA
Numpy
來源:https://www.dataquest.io/blog/numpy-cheat-sheet/
來源:http://datasciencefree.com/numpy.pdf
來源:https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE
來源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb
Pandas
來源:http://datasciencefree.com/pandas.pdf
來源:https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U
來源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb
Matplotlib
來源:https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet
來源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb
Scikit Learn
來源:http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
來源:http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
來源:https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb
Tensorflow
來源:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb
Pytorch
來源:https://github.com/bfortuner/pytorch-cheatsheet
數學(Math)
如果你真的想了解機器學習,那麼需要對統計(特别是機率)、線性代數和微積分的了解打下堅實的基礎。在大學期間我輔修數學,但是我肯定需要複習這些知識。 這些速查表提供了大多數需要了解最常見的機器學習算法背後的數學。
機率(Probability)
來源:http://www.wzchen.com/s/probability_cheatsheet.pdf
線性代數(Linear Algebra)
來源:https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
統計學(Statistics)
來源:http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
微積分(Calculus)
來源:http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N
原文連結:https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6