netron是微軟小哥lutzroeder的一個廣受好評的開源項目,位址https://github.com/lutzroeder/Netro
支援衆多模型:
1. 安裝NETRON
pip install netron
2. 測試代碼
由于不支援預設的pytorch模型格式(.pth),是以需要存為onnx
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.onnx
import netron
class model(nn.Module):
def __init__(self):
super(model, self).__init__()
self.block1 = nn.Sequential(
nn.Conv2d(64, 64, 3, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, 1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 3, padding=1, bias=False),
nn.BatchNorm2d(64)
)
self.conv1 = nn.Conv2d(3, 64, 3, padding=1, bias=False)
self.output = nn.Sequential(
nn.Conv2d(64, 1, 3, padding=1, bias=True),
nn.Sigmoid()
)
def forward(self, x):
x = self.conv1(x)
identity = x
x = F.relu(self.block1(x) + identity)
x = self.output(x)
return x
d = torch.rand(1, 3, 416, 416)
m = model()
o = m(d)
onnx_path = "onnx_model_name.onnx"
torch.onnx.export(m, d, onnx_path)
netron.start(onnx_path)
3. 結果
執行上面代碼後,會調用本地浏覽器打開,形式和tensorboard差不多