Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17132 Accepted Submission(s): 5624
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
Author JGShining(極光炫影)
#include<iostream>
#include<algorithm>
#include<cstring>
#define MAX(x,y) ((x)>(y)?(x):(y))
using namespace std;
long long arr[1000005];//輸入資料
long long dp[1000005];//表示前i個數取j段且取arr[i]的最優解 (滾動數組)
long long sum[1000005]; //前i個的和
long long maxn[2][1000005];//maxn[cur][i]表示前i個數取j段的最優解,maxn[pre][i]表示前i個取j-1段的最優解(滾動數組)
int N,M;
int main(){
int i,j,k,m,n;
ios::sync_with_stdio(false);
while(cin>>M>>N){
// memset(maxn,0,sizeof(maxn));
for(i=1;i<=N;i++){
cin>>arr[i];
sum[i]=sum[i-1]+arr[i];
maxn[0][i]=maxn[1][i]=0;
// dp[i]=arr[i];
}
int cur=1,pre=0;
for(j=1;j<=M;j++){
for(i=j;i<=N;i++){
if(i==j){
dp[i]=sum[i];
maxn[cur][i]=sum[i];
}
else {
maxn[cur][i]=maxn[cur][i-1];
dp[i]=MAX(dp[i-1],maxn[pre][i-1])+arr[i];//最優化政策:前i個選j段的最優解取下面兩個值的較大者,①前i-1個取
//j個且取arr[i-1]加上arr[i] ②前i-1個取j-1個的的最優解加上arr[i]
// dp[i]=dp[i-1]+arr[i];
// if(j>1)dp[i]=MAX(dp[i],maxn[pre][i-1]+arr[i]);
if(dp[i]>maxn[cur][i])maxn[cur][i]=dp[i];//更新maxn[cur][i]
}
}
swap(cur,pre);//滾動
}/*
int ans=dp[M];
for(i=M;i<=N;i++){
ans=MAX(ans,dp[i]);
}
cout<<ans<<endl;*/
cout<<maxn[M&1][N]<<endl;
}
}