一、資料驅動
1.相關性:皮爾遜系數
In [1]:
from numpy.random import randn
import numpy as np
from scipy.stats.stats import pearsonr
1.随機資料:相關性也很随機
In [2]:
x = randn(8)
y = randn(8)
pearsonr(x,y)[0]
Out[2]:
0.17812517311493814
2.正相關:大于0,小于1.一般大于0.5就很相關了
In [3]:
data1 = [0.8, 2.2, 2.8, 3.5, 4.8]
x = np.array(data1)
y = np.arange(5)
pearsonr(x,y)[0]
Out[3]:
0.9886905691829575
In [4]:
x = np.arange(15)
y = np.arange(15)
pearsonr(x,y)[0]
Out[4]:
1.0
3.負相關:大于-1,小于1
In [5]:
data1 = [0.8, 2.2, 2.8, 3.5, 4.8]
x = np.array(data1)
y = -np.arange(5)
pearsonr(x,y)[0]
Out[5]:
-0.9886905691829575
In [6]:
x = np.arange(15)
y = -np.arange(15)
pearsonr(x,y)[0]
Out[6]:
-1.0
2.疊代删除(增加)
In [4]:
## 導入工具包
import pandas
import numpy as np
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
le = LabelEncoder()
le.fit(iris['Species'])
y = le.transform(iris['Species']) # 對花的類别進行編号處理
lm = linear_model.LogisticRegression() # 選擇邏輯回歸
features = ['PetalLengthCm','PetalWidthCm','SepalLengthCm','SepalWidthCm'] # 特征變量
selected_features = []
rest_features = features[:]
best_acc = 0
while len(rest_features)>0:
temp_best_i = ''
temp_best_acc = 0
for feature_i in rest_features:
temp_features = selected_features + [feature_i,]
X = iris[temp_features] # 每次選擇一個特征進行訓練
scores = cross_val_score(lm,X,y,cv=5 , scoring='accuracy')
acc = np.mean(scores)
if acc > temp_best_acc:
temp_best_acc = acc
temp_best_i = feature_i
print("select",temp_best_i,"acc:",temp_best_acc) # 列印選擇的特征和評分
if temp_best_acc > best_acc: # 判斷是否大于最好的評分
best_acc = temp_best_acc
selected_features += [temp_best_i,]
rest_features.remove(temp_best_i)
else:
break
print("best feature set: ",selected_features,"acc: ",best_acc)
('select', 'PetalWidthCm', 'acc:', 0.85333333333333328)
('select', 'SepalWidthCm', 'acc:', 0.94000000000000006)
('select', 'PetalLengthCm', 'acc:', 0.95333333333333337)
('select', 'SepalLengthCm', 'acc:', 0.96000000000000019)
('best feature set: ', ['PetalWidthCm', 'SepalWidthCm', 'PetalLengthCm', 'SepalLengthCm'], 'acc: ', 0.96000000000000019)
3.基于模型
3.1.單變量特征標明
In [50]:
# 通過卡方檢驗標明資料特征
from pandas import read_csv
from numpy import set_printoptions
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
# 導入資料
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
# 将資料分為輸入資料和輸出結果
arrary = iris.values
# print(arrary)
X =arrary[:,0:4]
le = LabelEncoder()
le.fit(iris['Species'])
Y = le.transform(iris['Species']) # 對花的類别進行編号處理
# print Y
# 特征標明
test = SelectKBest(score_func=chi2, k=4)
fit = test.fit(X, Y)
set_printoptions(precision=3)
print(fit.scores_)
features = fit.transform(X)
print(features)
[ 10.818 3.594 116.17 67.245]
[[ 5.1 3.5 1.4 0.2]
[ 4.9 3. 1.4 0.2]
[ 4.7 3.2 1.3 0.2]
[ 4.6 3.1 1.5 0.2]
[ 5. 3.6 1.4 0.2]
[ 5.4 3.9 1.7 0.4]
[ 4.6 3.4 1.4 0.3]
[ 5. 3.4 1.5 0.2]
[ 4.4 2.9 1.4 0.2]
[ 4.9 3.1 1.5 0.1]
[ 5.4 3.7 1.5 0.2]
[ 4.8 3.4 1.6 0.2]
[ 4.8 3. 1.4 0.1]
[ 4.3 3. 1.1 0.1]
[ 5.8 4. 1.2 0.2]
[ 5.7 4.4 1.5 0.4]
[ 5.4 3.9 1.3 0.4]
[ 5.1 3.5 1.4 0.3]
[ 5.7 3.8 1.7 0.3]
[ 5.1 3.8 1.5 0.3]
[ 5.4 3.4 1.7 0.2]
[ 5.1 3.7 1.5 0.4]
[ 4.6 3.6 1. 0.2]
[ 5.1 3.3 1.7 0.5]
[ 4.8 3.4 1.9 0.2]
[ 5. 3. 1.6 0.2]
[ 5. 3.4 1.6 0.4]
[ 5.2 3.5 1.5 0.2]
[ 5.2 3.4 1.4 0.2]
[ 4.7 3.2 1.6 0.2]
[ 4.8 3.1 1.6 0.2]
[ 5.4 3.4 1.5 0.4]
[ 5.2 4.1 1.5 0.1]
[ 5.5 4.2 1.4 0.2]
[ 4.9 3.1 1.5 0.1]
[ 5. 3.2 1.2 0.2]
[ 5.5 3.5 1.3 0.2]
[ 4.9 3.1 1.5 0.1]
[ 4.4 3. 1.3 0.2]
[ 5.1 3.4 1.5 0.2]
[ 5. 3.5 1.3 0.3]
[ 4.5 2.3 1.3 0.3]
[ 4.4 3.2 1.3 0.2]
[ 5. 3.5 1.6 0.6]
[ 5.1 3.8 1.9 0.4]
[ 4.8 3. 1.4 0.3]
[ 5.1 3.8 1.6 0.2]
[ 4.6 3.2 1.4 0.2]
[ 5.3 3.7 1.5 0.2]
[ 5. 3.3 1.4 0.2]
[ 7. 3.2 4.7 1.4]
[ 6.4 3.2 4.5 1.5]
[ 6.9 3.1 4.9 1.5]
[ 5.5 2.3 4. 1.3]
[ 6.5 2.8 4.6 1.5]
[ 5.7 2.8 4.5 1.3]
[ 6.3 3.3 4.7 1.6]
[ 4.9 2.4 3.3 1. ]
[ 6.6 2.9 4.6 1.3]
[ 5.2 2.7 3.9 1.4]
[ 5. 2. 3.5 1. ]
[ 5.9 3. 4.2 1.5]
[ 6. 2.2 4. 1. ]
[ 6.1 2.9 4.7 1.4]
[ 5.6 2.9 3.6 1.3]
[ 6.7 3.1 4.4 1.4]
[ 5.6 3. 4.5 1.5]
[ 5.8 2.7 4.1 1. ]
[ 6.2 2.2 4.5 1.5]
[ 5.6 2.5 3.9 1.1]
[ 5.9 3.2 4.8 1.8]
[ 6.1 2.8 4. 1.3]
[ 6.3 2.5 4.9 1.5]
[ 6.1 2.8 4.7 1.2]
[ 6.4 2.9 4.3 1.3]
[ 6.6 3. 4.4 1.4]
[ 6.8 2.8 4.8 1.4]
[ 6.7 3. 5. 1.7]
[ 6. 2.9 4.5 1.5]
[ 5.7 2.6 3.5 1. ]
[ 5.5 2.4 3.8 1.1]
[ 5.5 2.4 3.7 1. ]
[ 5.8 2.7 3.9 1.2]
[ 6. 2.7 5.1 1.6]
[ 5.4 3. 4.5 1.5]
[ 6. 3.4 4.5 1.6]
[ 6.7 3.1 4.7 1.5]
[ 6.3 2.3 4.4 1.3]
[ 5.6 3. 4.1 1.3]
[ 5.5 2.5 4. 1.3]
[ 5.5 2.6 4.4 1.2]
[ 6.1 3. 4.6 1.4]
[ 5.8 2.6 4. 1.2]
[ 5. 2.3 3.3 1. ]
[ 5.6 2.7 4.2 1.3]
[ 5.7 3. 4.2 1.2]
[ 5.7 2.9 4.2 1.3]
[ 6.2 2.9 4.3 1.3]
[ 5.1 2.5 3. 1.1]
[ 5.7 2.8 4.1 1.3]
[ 6.3 3.3 6. 2.5]
[ 5.8 2.7 5.1 1.9]
[ 7.1 3. 5.9 2.1]
[ 6.3 2.9 5.6 1.8]
[ 6.5 3. 5.8 2.2]
[ 7.6 3. 6.6 2.1]
[ 4.9 2.5 4.5 1.7]
[ 7.3 2.9 6.3 1.8]
[ 6.7 2.5 5.8 1.8]
[ 7.2 3.6 6.1 2.5]
[ 6.5 3.2 5.1 2. ]
[ 6.4 2.7 5.3 1.9]
[ 6.8 3. 5.5 2.1]
[ 5.7 2.5 5. 2. ]
[ 5.8 2.8 5.1 2.4]
[ 6.4 3.2 5.3 2.3]
[ 6.5 3. 5.5 1.8]
[ 7.7 3.8 6.7 2.2]
[ 7.7 2.6 6.9 2.3]
[ 6. 2.2 5. 1.5]
[ 6.9 3.2 5.7 2.3]
[ 5.6 2.8 4.9 2. ]
[ 7.7 2.8 6.7 2. ]
[ 6.3 2.7 4.9 1.8]
[ 6.7 3.3 5.7 2.1]
[ 7.2 3.2 6. 1.8]
[ 6.2 2.8 4.8 1.8]
[ 6.1 3. 4.9 1.8]
[ 6.4 2.8 5.6 2.1]
[ 7.2 3. 5.8 1.6]
[ 7.4 2.8 6.1 1.9]
[ 7.9 3.8 6.4 2. ]
[ 6.4 2.8 5.6 2.2]
[ 6.3 2.8 5.1 1.5]
[ 6.1 2.6 5.6 1.4]
[ 7.7 3. 6.1 2.3]
[ 6.3 3.4 5.6 2.4]
[ 6.4 3.1 5.5 1.8]
[ 6. 3. 4.8 1.8]
[ 6.9 3.1 5.4 2.1]
[ 6.7 3.1 5.6 2.4]
[ 6.9 3.1 5.1 2.3]
[ 5.8 2.7 5.1 1.9]
[ 6.8 3.2 5.9 2.3]
[ 6.7 3.3 5.7 2.5]
[ 6.7 3. 5.2 2.3]
[ 6.3 2.5 5. 1.9]
[ 6.5 3. 5.2 2. ]
[ 6.2 3.4 5.4 2.3]
[ 5.9 3. 5.1 1.8]]
結論:3 4 1 2
3.2.遞歸特征消除
In [51]:
# 通過遞歸消除來標明特征
from pandas import read_csv
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
# 導入資料
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
# 将資料分為輸入資料和輸出結果
arrary = iris.values
# print(arrary)
X =arrary[:,0:4]
# print X
le = LabelEncoder()
le.fit(iris['Species'])
Y = le.transform(iris['Species']) # 對花的類别進行編号處理
# 特征標明
model = LogisticRegression()
rfe = RFE(model, 2)
fit = rfe.fit(X, Y)
print("特征個數:")
print(fit.n_features_)
print("被標明的特征:")
print(fit.support_)
print("特征排名:")
print(fit.ranking_)
特征個數:
2
被標明的特征:
[False True False True]
特征排名:
[3 1 2 1]
3.5.主要成分分析
In [7]:
# 通過主要成分分析標明資料特征
from pandas import read_csv
from sklearn.decomposition import PCA
# 導入資料
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
# 将資料分為輸入資料和輸出結果
arrary = iris.values
# print(arrary)
X =arrary[:,0:4]
# print X
le = LabelEncoder()
le.fit(iris['Species'])
Y = le.transform(iris['Species']) # 對花的類别進行編号處理
# 特征標明
pca = PCA(n_components=2)
fit = pca.fit(X)
print("解釋方差:%s" % fit.explained_variance_ratio_)
print(fit.components_)
解釋方差:[ 0.92461621 0.05301557]
[[ 0.36158968 -0.08226889 0.85657211 0.35884393]
[ 0.65653988 0.72971237 -0.1757674 -0.07470647]]
結論: 4 3 2 1
3.6.特征重要性
In [47]:
# 通過決策樹計算特征的重要性
from pandas import read_csv
from sklearn.ensemble import ExtraTreesClassifier
# 導入資料
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
# 将資料分為輸入資料和輸出結果
arrary = iris.values
X =np.array(arrary[:,0:4])
le = LabelEncoder()
le.fit(iris['Species'])
Y = np.array(le.transform(iris['Species'])) # 對花的類别進行編号處理
# 特征標明
model = ExtraTreesClassifier()
fit = model.fit(X, Y)
print(fit.feature_importances_)
[ 0.03809246 0.05882966 0.40479618 0.49828169]
結論: 4 3 2 1
3.7.随機森林特征選擇法 —— Gini Importance
In [39]:
import pandas
import numpy as np
from sklearn import ensemble
from sklearn.preprocessing import LabelEncoder
iris =pandas.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
iris.columns=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']
le = LabelEncoder()
le.fit(iris['Species'])
rf = ensemble.RandomForestClassifier()
features = ['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']
y = np.array(le.transform(iris['Species']))
X = np.array(iris[features])
#Gini importance
rf.fit(X,y)
print(rf.feature_importances_)
[ 0.08703922 0.03382421 0.43010863 0.44902794]
結論: 3 4 2 1
3.8.随機森林特征選擇法 —— Mean Decrease Accuracy
In [38]:
from sklearn.metrics import accuracy_score
from sklearn.model_selection import ShuffleSplit
rs = ShuffleSplit(n_splits=10,test_size=0.1)
scores = np.zeros((10,4))
count = 0
for train_idx, test_idx in rs.split(X):
X_train , X_test = X[train_idx] , X[test_idx]
y_train , y_test = y[train_idx] , y[test_idx]
r = rf.fit(X_train,y_train)
acc = accuracy_score(y_test,rf.predict(X_test))
for i in range(len(features)):
X_t = X_test.copy()
np.random.shuffle(X_t[:, i])
shuff_acc = accuracy_score(y_test,rf.predict(X_t))
scores[count,i] = ((acc-shuff_acc)/acc)
count += 1
print(np.mean(scores,axis=0))
[ 0. 0. 0.30047619 0.27362637]
結論: 3 4 1 2
二、領域專家
其實絕大多數的情況咨詢一些領域的專家或學習該領域的一些知識能夠幫助你更好的進行特征選擇。
三、參考及git
In [ ]: