強大的sklearn庫可以解決的問題:
train_test_split傳回切分的資料集train/test:
*array:切分資料源(list/np.array/pd.DataFrame/scipy_sparse matrices)
test_size和train_size是互補和為1的一對值
shuffle:對資料切分前是否洗牌 stratify:是否分層抽樣切分資料(If shuffle=False then stratify must be None.)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2, random_state=666,shuffle=True)
# Parameters:
# *arrays :需要進行劃分的X ;
# target :資料集的結果
# test_size :測試集占整個資料集的多少比例
# train_size :test_size +train_size = 1
# random_state : 随機種子
# shuffle : 是否洗牌 在進行劃分前
# 傳回 X_train,X_test,y_train,y_test
x = np.arange(10).reshape([5, 2])
y = np.arange(5)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
print(x_train)
print(y_train)
交叉驗證
cross_val_score
對資料集進行指定次數的交叉驗證并為每次驗證效果評測
其中,score 預設是以 scoring='f1_macro’進行評測的,餘外針對分類或回歸還有:
分類、聚類、回歸
這需要from sklearn import metrics ,通過在cross_val_score 指定參數來設定評測标準;
當cv 指定為int 類型時,預設使用KFold 或StratifiedKFold 進行資料集打亂,
from sklearn import svm
import math
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.model_selection import cross_val_score
datas = datasets.load_iris()
print(datas.keys())
x_train, x_test, y_train, y_test = train_test_split(
datas['data'], datas['target'], test_size=0.4, random_state=0)
clf = svm.SVC(kernel='linear', C=1).fit(x_train, y_train)
print(clf.score(x_test, y_test))
# 5折調查驗證
scores = cross_val_score(clf, datas['data'], datas['target'], cv=5)
print(scores.mean())
3.cross_val_predict
cross_val_predict 與cross_val_score 很相像,不過不同于傳回的是評測效果,cross_val_predict 傳回的是estimator 的分類結果(或回歸值),這個對于後期模型的改善很重要,可以通過該預測輸出對比實際目标值,準确定位到預測出錯的地方,為我們參數優化及問題排查十分的重要。
傳回的是預測的結果:
from sklearn import metrics
datas = datasets.load_iris()
x_train, x_test, y_train, y_test = train_test_split(datas["data"], datas['target'], test_size=0.3)
clf = svm.SVC(kernel='linear', C=2).fit(x_train, y_train)
print(clf.score(x_test, y_test))
predicteds = cross_val_predict(clf, datas["data"], datas["target"], cv=10)
print(predicteds)
print(metrics.accuracy_score(datas['target'], predicteds))
4.KFold
K折交叉驗證,這是将資料集分成K份的官方給定方案,所謂K折就是将資料集通過K次分割,使得所有資料既在訓練集出現過,又在測試集出現過,當然,每次分割中不會有重疊。相當于無放回抽樣。
In [33]: from sklearn.model_selection import KFold
In [34]: X = ['a','b','c','d']
In [35]: kf = KFold(n_splits=2)
In [36]: for train, test in kf.split(X):
...: print train, test
...: print np.array(X)[train], np.array(X)[test]
...: print '\n'
...:
[2 3] [0 1]
['c' 'd'] ['a' 'b']
[0 1] [2 3]
['a' 'b'] ['c' 'd']
5.LeaveOneOut
LeaveOneOut 其實就是KFold 的一個特例,因為使用次數比較多,是以獨立的定義出來,完全可以通過KFold 實作。
In [37]: from sklearn.model_selection import LeaveOneOut
In [38]: X = [1,2,3,4]
In [39]: loo = LeaveOneOut()
In [41]: for train, test in loo.split(X):
...: print train, test
...:
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
#使用KFold實作LeaveOneOtut
In [42]: kf = KFold(n_splits=len(X))
In [43]: for train, test in kf.split(X):
...: print train, test
...:
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
6.LeavePOut
這個也是KFold 的一個特例,用KFold 實作起來稍麻煩些,跟LeaveOneOut 也很像。
In [44]: from sklearn.model_selection import LeavePOut
In [45]: X = np.ones(4)
In [46]: lpo = LeavePOut(p=2)
In [47]: for train, test in lpo.split(X):
...: print train, test
...:
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]
7.ShuffleSplit
ShuffleSplit 咋一看用法跟LeavePOut 很像,其實兩者完全不一樣,LeavePOut 是使得資料集經過數次分割後,所有的測試集出現的元素的集合即是完整的資料集,即無放回的抽樣,而ShuffleSplit 則是有放回的抽樣,隻能說經過一個足夠大的抽樣次數後,保證測試集出現了完成的資料集的倍數。
In [48]: from sklearn.model_selection import ShuffleSplit
In [49]: X = np.arange(5)
In [50]: ss = ShuffleSplit(n_splits=3, test_size=.25, random_state=0)
In [51]: for train_index, test_index in ss.split(X):
...: print train_index, test_index
...:
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]
8.StratifiedKFold
這個就比較好玩了,通過指定分組,對測試集進行無放回抽樣。
In [52]: from sklearn.model_selection import StratifiedKFold
In [53]: X = np.ones(10)
In [54]: y = [0,0,0,0,1,1,1,1,1,1]
In [55]: skf = StratifiedKFold(n_splits=3)
In [56]: for train, test in skf.split(X,y):
...: print train, test
...:
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]
9.GroupKFold
這個跟StratifiedKFold 比較像,不過測試集是按照一定分組進行打亂的,即先分堆,然後把這些堆打亂,每個堆裡的順序還是固定不變的。
In [57]: from sklearn.model_selection import GroupKFold
In [58]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
In [59]: y = ['a','b','b','b','c','c','c','d','d','d']
In [60]: groups = [1,1,1,2,2,2,3,3,3,3]
In [61]: gkf = GroupKFold(n_splits=3)
In [62]: for train, test in gkf.split(X,y,groups=groups):
...: print train, test
...:
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]
10.LeaveOneGroupOut
這個是在GroupKFold 上的基礎上混亂度又減小了,按照給定的分組方式将測試集分割下來。
In [63]: from sklearn.model_selection import LeaveOneGroupOut
In [64]: X = [1, 5, 10, 50, 60, 70, 80]
In [65]: y = [0, 1, 1, 2, 2, 2, 2]
In [66]: groups = [1, 1, 2, 2, 3, 3, 3]
In [67]: logo = LeaveOneGroupOut()
In [68]: for train, test in logo.split(X, y, groups=groups):
...: print train, test
...:
[2 3 4 5 6] [0 1]
[0 1 4 5 6] [2 3]
[0 1 2 3] [4 5 6]
11.LeavePGroupsOut
這個沒啥可說的,跟上面那個一樣,隻是一個是單組,一個是多組
from sklearn.model_selection import LeavePGroupsOut
X = np.arange(6)
y = [1, 1, 1, 2, 2, 2]
groups = [1, 1, 2, 2, 3, 3]
lpgo = LeavePGroupsOut(n_groups=2)
for train, test in lpgo.split(X, y, groups=groups):
print train, test
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]
12.GroupShuffleSplit
這個是有放回抽樣
n [75]: from sklearn.model_selection import GroupShuffleSplit
In [76]: X = [.1, .2, 2.2, 2.4, 2.3, 4.55, 5.8, .001]
In [77]: y = ['a', 'b','b', 'b', 'c','c', 'c', 'a']
In [78]: groups = [1,1,2,2,3,3,4,4]
In [79]: gss = GroupShuffleSplit(n_splits=4, test_size=.5, random_state=0)
In [80]: for train, test in gss.split(X, y, groups=groups):
...: print train, test
...:
[0 1 2 3] [4 5 6 7]
[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]
13.TimeSeriesSplit
針對時間序列的處理,防止未來資料的使用,分割時是将資料進行從前到後切割(這個說法其實不太恰當,因為切割是延續性的。。)
```csharp
In [81]: from sklearn.model_selection import TimeSeriesSplit
In [82]: X = np.array([[1,2],[3,4],[1,2],[3,4],[1,2],[3,4]])
In [83]: tscv = TimeSeriesSplit(n_splits=3)
In [84]: for train, test in tscv.split(X):
...: print train, test
...:
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]