程式設計題目:
48.有一分數序列:2/1,3/2,5/3,8/5,13/8,21/13… 求出這個數列的前20項之和。
示例代碼:
package program.calculation.exercise48;
import java.util.Scanner;
/**
* 48.有一分數序列:1/2,2/3,3/5,5/8,8/13,13/21... 求出這個數列的前20項之和。
* 分析:注意分子與分母的變化規律:分子和分母分别是一組斐波那契數列,即每一項等于前兩項的和。
*/
public class FractionSum {
public static void main(String[] args) {
System.out.println("請輸入數列的項數n:");
@SuppressWarnings("resource")
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
System.out.println("第一種方式(循環):");
double sum1 = loopFraction(n);
System.out.println("數列前"+n+"項的和是:"+sum1);
System.out.println("第二種方式(遞歸):");
double sum2 = recurFraction(n);
System.out.println("數列前"+n+"項的和是:"+sum2);
}
//第一種方式:循環求出分子分母比值,再相加
private static double loopFraction(int n) {
double molecule = 1; //分子
double denominator = 1; //分母
double fraction = molecule/denominator; //分數值
double sum = 0; //數列前n項之和
for(int i=1; i<=n; i++){
double temp1 = molecule;
double temp2 = denominator;
molecule = temp1+temp2;
denominator = temp1;
fraction = molecule/denominator;
sum += fraction;
}
return sum;
}
//第二種方式:遞歸分别求分子分母,再相除
private static double recurFraction(int n) {
double sum = 0;
for (int i=1; i<=n; i++) {
sum += (double)(recurMolecule(i)/recurDenominator(i));
}
return sum;
}
//遞歸求分子
private static double recurMolecule(int n) {
double molecule = 0;
if(1 == n) {
molecule = 2;
}else if(2 == n) {
molecule = 3;
}else {
molecule = recurMolecule(n-1) + recurMolecule(n-2);
}
return molecule;
}
//遞歸求分母
private static double recurDenominator(int n) {
double denominator = 0;
if(1 == n) {
denominator = 1;
}else if(2 == n) {
denominator = 2;
}else {
denominator = recurDenominator(n-1) + recurDenominator(n-2);
}
return denominator;
}
}