Methods | RegDB | SYSU-MM01 | ||
---|---|---|---|---|
Rank-1(%) | mAP(%) | Rank-1(%) | mAP(%) | |
Deep Zero-Padding(ICCV2017) | – | – | 14.80 | 15.95 |
HCML(AAAI2018) | 24.44 | 20.80 | – | – |
cmGAN(IJCAI2018) | – | – | 26.97 | 27.80 |
BDTR(IJCAI2018) | 33.47 | 31.83 | 17.01 | 19.66 |
D2RL(CVPR2019) | 43.40 | 44.10 | 28.90 | 29.20 |
HSME(AAAI2019) | 50.85 | 47.00 | 20.68 | 23.12 |
IPVT-1 and MSR(Access2019) | 58.76 | 47.85 | 23.18 | 22.49 |
EDFL(ArXiv2019) | 52.58 | 52.98 | 36.94 | 40.77 |
AlignGAN(ICCV2019) | 56.30 | 53.40 | 42.40 | 40.70 |
HPILN(IET IP2019) | – | – | 41.36 | 42.95 |
TSLFN+HC(ArXiv2019) | 83.00 | 72.00 | 56.96 | 54.95 |
DSCSN+CCN(ArXiv2019) | 60.80 | 60.00 | 35.10 | 37.40 |
JSIA(AAAI2020) | – | – | 38.10 | 36.90 |
Hi-CMD(CVPR2020) | 70.44 | 65.93 | 34.94 | 35.94 |
cm-SSFT(CVPR2020) | 72.30 | 72.90 | 61.60 | 63.20 |
BDTR(IJCAI2018新版本AWG) | 70.05 | 66.37 | 47.50 | 47.65 |
1. 2017-ICCV-RGB-Infrared Cross-Modality Person Re-Identification
Deep Zero-Padding
2. 2018-AAAI-Hierarchical Discriminative Learning for Visible Thermal Person Re-Identification
Hierarchical Cross-modality Metric Learning (HCML)
3. 2018-IJCAI-Cross-Modality Person Re-Identification with Generative Adversarial Training
cross-modality Generative Adversarial Network (cmGAN)
4. 2018-IJCAI-Visible thermal person re-identification via dual-constrained top-ranking
Bi-directional Dual-constrained Top-Ranking (BDTR)
5. 2019-CVPR-Learning to Reduce Dual-level Discrepancy for Infrared-Visible Person Re-identification
Dual-level Discrepancy Reduction Learning(D2RL)
6. 2019-AAAI-HSME: Hypersphere Manifold Embedding for Visible Thermal Person Re-Identification
HyperSphere Manifold Embedding (HSME)
7. 2019-IEEE Access-Person Re-Identification Between Visible and Thermal Camera Images Based on Deep Residual CNN Using Single Input
(IPVT-1 and MSR)
8. 2019-ArXiv-Enhancing the Discriminative Feature Learning for Visible-Thermal Cross-Modality Person Re-Identification
Enhancing Discriminative Feature Learning (EDFL)
9. 2019-ICCV-RGB-Infrared Cross-Modality Person Re-Identification via Joint Pixel and Feature Alignment
Alignment Generative Adversarial Network (AlignGAN)
10.2019-IET IP-HPILN: A feature learning framework for cross-modality person re-identification
Hard Pentaplet and Identity Loss Network (HPILN)
11. 2019-ArXiv-Hetero-Center Loss for Cross-Modality Person Re-Identification
Two-Stream Local Feature Network (TSLFN)+Hetero-Center loss (HC)
12.2019-ArXiv-Attend to the Difference: Cross-Modality Person Re-identification via Contrastive Correlation
Dual-path Spatial-structure-preserving Common Space Network (DSCSN) + Contrastive Correlation Network (CCN)
13.2020-CVPR-Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification
Hi-CMD
14.2020-CVPR-Cross-modality Person re-identification with Shared-Specific Feature Transfer
cm-SSFT
15.2020-AAAI-Cross-Modality Paired-Images Generation for RGB-InfraredPerson Re-Identification
JSIA
資料集
RegDB Dataset 【1】
SYSU-MM01 Dataset 【2】
【1】2017-Sensor-Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras
【2】2017-ICCV-RGB-Infrared Cross-Modality Person Re-Identification
公開代碼
葉茫博士的代碼:
https://github.com/mangye16/Cross-Modal-Re-ID-baseline
新版代碼:
https://github.com/liuliu408/Cross-Modal-Re-ID-baseline_2020
TSLFN+HC(ArXiv2019)代碼:
https://codeload.github.com/98zyx/Hetero-center-loss-for-cross-modality-person-re-id/zip/master
HiCMD(CVPR2020)代碼:
https://github.com/bismex/HiCMD
JSIA(AAAI2020)代碼:
https://github.com/wangguanan/JSIA-ReID