//題意:有一個容器可以增,删,查找,删除時若不存在則輸入No Element,查找時不存在則輸入Not Find;
//利用樹狀數組和二分查找解決
//首先利用樹狀數組儲存其數組元素的狀态,若a存在則getSum(a) - getSum(a - 1)必須大于0,因為a > 0
//若a不存在,則更新樹狀數組
//查找的時候利用二分查找,這裡注意由于我們是查找比a大的第k個元素,是以并不能像原來的二分查找那樣,找到k=getSum(x) - getSum(a)就立刻傳回
//因為有可能x是不存在的,是以我們隻能找到滿足k=getSum(x) - getSum(a)的最小的x傳回,這樣x才是找到的值
#include <iostream>
#include <algorithm>
using namespace std;
#define NSIZ 100200
int tree[NSIZ];
int lowbit(int i)
{
return i&(-i);
}
int getSum(int i)
{
int sum = 0;
while(i >= 1)
{
sum += tree[i];
i -= lowbit(i);
}
return sum;
}
void update(int i, int x)
{
while(i <= NSIZ)
{
tree[i] += x;
i += lowbit(i);
}
}
void binarySearch(int a, int k)
{
int left = a + 1, right = NSIZ;
int num1 = getSum(a), num2 = 0;
int mid = 0;
while(left <= right)
{
mid = left + (right - left) / 2;
num2 = getSum(mid);
if (num2 - num1 < k)
{
left = mid + 1;
}
else
{
right = mid - 1;
}
}
if (left >= NSIZ)
{
printf("Not Find!\n");
}
else
{
printf("%d\n", left);
}
}
int main()
{
int i, j, p, m;
int a, k, e;
while(scanf("%d", &m) != EOF)
{
memset(tree, 0, sizeof(tree));
for (i = 0;i < m; ++i)
{
scanf("%d", &p);
switch(p)
{
case 0:
{
scanf("%d", &e);
update(e, 1);
}
break;
case 1:
{
scanf("%d", &e);
if (getSum(e) - getSum(e-1) == 0)
{
printf("No Elment!\n");
}
else
{
update(e, -1);
}
}
break;
case 2:
{
scanf("%d %d", &a, &k);
binarySearch(a, k);
}
break;
default:
break;
}
}
}
return 0;
}