源碼URL:
https://github.com/michuanhaohao/deep-person-reid/blob/master/dataset_loader.py
讀資料/吐資料,讀前39行源碼并注釋
from __future__ import print_function, absolute_import
import os
from PIL import Image
import numpy as np
import os.path as osp
import torch # 需要重構pytorch的dataloader函數
from torch.utils.data import Dataset
def read_image(img_path): # 定義讀圖檔函數,傳img_path進去
got_img = False # 定義标志位,判斷是否讀到圖檔以便報錯
# 如果圖檔有問題?如果網絡通信斷了?如果因為各種原因沒讀到圖檔?
if not os.path.exists(img_path): # path是否存在
raise IOError("{} dose not exist".format(img_path)) # 不存在則報錯"img_path dose not exist"
while not got_img: # 若沒有讀到圖檔,while循環
try: # 嘗試讀圖檔
img = Image.open(img_path).convert('RGB') # 函數核心,打開圖檔,轉RGB
got_img = True # 讀到圖檔,标志位變為True
except IOError: # 否則出現異常
print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path)) # 報錯
pass # 循環跳出
return img # 傳回img
class ImageDataset(Dataset): # 旨在重構pytorch的dataset,将Dataset作為參數放入,繼承Dataset的類
def __init__(self, dataset, transform=None): # 傳入dataset,目前不考慮資料增廣
self.dataset = dataset # 定義dataset
self.transform = transform # 要用到,先定義為類的屬性
def __len__(self): # 在直接傳回dataset的長度,傳回圖檔數量
return len(self.dataset)
def __getitem__(self, index):
img_path, pid, camid = self.dataset[index] # 結合data_manager的dataset,得到三個參數
img = read_image(img_path) # 用剛剛的function把img讀出來
if self.transform is not None: # 如果有transform
img = self.transform # 執行
return img, pid, camid # 直接傳回img和pid,camid
if __name__ == '__main__':
import data_manager
dataset = data_manager.init_img_dataset(root='F:/Market-1501/Market-1501-v15.09.15', name='market1501')
train_loader = ImageDataset(dataset.train)
from IPython import embed
embed()
"""
In [1]: for batch_id, (img, pid, camid) in enumerate(train_lodaer):
...: break
...:
In [2]: img
Out[2]: <PIL.Image.Image image mode=RGB size=64x128 at 0x16C128F5A58>
In [3]: img.save('aaaa.jpg')
"""
儲存圖像aaaa.jpg結果檢視: