天天看點

32篇深度學習與遙感論文推薦

32篇深度學習與遙感論文推薦
32篇深度學習與遙感論文推薦

深度學習與遙感論文推薦

32篇深度學習與遙感論文推薦
32篇深度學習與遙感論文推薦
32篇深度學習與遙感論文推薦

期刊論文推薦

32篇深度學習與遙感論文推薦

1.Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., … Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716.

2.Cunha, R. L. F. and Silva, B.: ESTIMATING CROP YIELDS WITH REMOTE SENSING AND DEEP LEARNING, (2020), ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3/W2-2020, 59–64.

3.Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2020). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies.

4.Yüksel, et al., (2020). Deep Learning for Medicine and Remote Sensing: A Brief Review, International Journal of Environment and Geoinformatics (IJEGEO), 7(3):280-288.

5.Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177.

6.Paoletti, M. E., Haut, J. M., Plaza, J., & Plaza, A. (2019). Deep learning classifiers for hyperspectral imaging: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 279–317.

7.Audebert, N., Le Saux, B., & Lefevre, S. (2019). Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE Geoscience and Remote Sensing Magazine, 7(2), 159–173.

8.Li, J., Huang, X., & Gong, J. (2019). Deep neural network for remote sensing image interpretation: status and perspectives. National Science Review.

9.Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2019). Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690–6709.

10.Zhu, M., He, Y.N. and He, Q.Y. (2019) A Review of Researches on Deep Learning in Remote Sensing Application. International Journal of Geosciences, 10, 1-11.

11.Mountrakis, G., Li, J., Lu, X., & Hellwich, O. (2018). Deep learning for remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing.

12.Aaron E. Maxwell, Timothy A. Warner & Fang Fang (2018) Implementation of machine-learning classification in remote sensing: an applied review, International Journal of Remote Sensing, 39:9, 2784-2817.

13.Li Y, Zhang H, Xue X, Jiang Y, Shen Q. (2018). Deep learning for remote sensing image classification: A survey. WIREs Data Mining Knowl Discov. 2018;8:e1264.

14.Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36.

15.Cheng, G., Han, J., & Lu, X. (2017). Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proceedings of the IEEE, 105(10), 1865–1883.

16.Audebert, N., Boulch, A., Randrianarivo, H., Le Saux, B., Ferecatu, M., Lefevre, S., & Marlet, R. (2017). Deep learning for urban remote sensing. 2017 Joint Urban Remote Sensing Event (JURSE).

17.Yao, C., Luo, X., Zhao, Y., Zeng, W., & Chen, X. (2017). A review on image classification of remote sensing using deep learning. 2017 3rd IEEE International Conference on Computer and Communications (ICCC).

18.John E. Ball, Derek T. Anderson, Chee Seng Chan, (2017) “Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community,” J. Appl. Remote Sens. 11(4),042609.

19.Zhang, L., Zhang, L., & Du, B. (2016). Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22–40.

20.Zhang, L., Xia, G.-S., Wu, T., Lin, L., & Tai, X. C. (2016). Deep Learning for Remote Sensing Image Understanding. Journal of Sensors, 2016, 1–2.

32篇深度學習與遙感論文推薦
32篇深度學習與遙感論文推薦

學位論文推薦

32篇深度學習與遙感論文推薦

1.張剛.(2020).基于深度學習的遙感圖像語義分割關鍵技術研究[PhD].中國科學院光電技術研究所.

2.王慶.(2019).基于深度學習的遙感影像變化檢測方法研究[PhD].武漢大學.

3.張旭東.(2019).基于壓縮感覺和深度學習的超分辨成像方法研究[PhD].中國科學院上海技術實體研究所.

4.陶翊婷.(2019).基于深度學習的高空間分辨率遙感影像分類方法研究[PhD].武漢大學.

5.朱祺琪.(2018).面向高分辨率遙感影像場景語義了解的機率主題模型研究[PhD].武漢大學.

6.邱康.(2018).基于機器學習的圖像超分辨率重建關鍵技術研究[PhD].武漢大學.

7.呂浩博.(2018).基于深度學習的長時間序列城市制圖與變化檢測研究[PhD].清華大學.

8.劉娜.(2018).面向遙感圖像分類與檢索的深度學習特征表達研究[PhD].上海交通大學.

9.胡凡.(2017).基于特征學習的高分辨率遙感圖像場景分類研究[PhD].武漢大學.

10.馬曉瑞.(2017).基于深度學習的高光譜影像分類方法研究[PhD].大連理工大學.

11.張帆.(2017).面向高分辨率遙感影像分析的深度學習方法研究[PhD].武漢大學.

12.磊風.(2016).面向農業領域的大資料關鍵技術研究[PhD].中國農業科學院.

MORE

往期精彩

GEE Deep Learning

Google Earth Engine學習資料總結與分享

GEE 綜述論文第一篇

GEE 綜述論文第二篇

面向科研人員的免費遙感資料集