D e n s e N e t − M o d e l ( p y t o r c h 版 本 ) DenseNet-Model(pytorch版本) DenseNet−Model(pytorch版本)
import torch
import torch.nn as nn
from collections import OrderedDict
class _DenseLayer(nn.Sequential):
def __init__(self, in_channels, growth_rate, bn_size):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(in_channels))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv1', nn.Conv2d(in_channels, bn_size * growth_rate,
kernel_size=1,
stride=1, bias=False))
self.add_module('norm2', nn.BatchNorm2d(bn_size*growth_rate))
self.add_module('relu2', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(bn_size*growth_rate, growth_rate,
kernel_size=3,
stride=1, padding=1, bias=False))
# 重載forward函數
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
return torch.cat([x, new_features], 1)
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, in_channels, bn_size, growth_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
self.add_module('denselayer%d' % (i+1),
_DenseLayer(in_channels+growth_rate*i,
growth_rate, bn_size))
class _Transition(nn.Sequential):
def __init__(self, in_channels, out_channels):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm2d(in_channels))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(in_channels, out_channels,
kernel_size=1,
stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
class DenseNet_BC(nn.Module):
def __init__(self, growth_rate=12, block_config=(6,12,24,16),
bn_size=4, theta=0.5, num_classes=10):
super(DenseNet_BC, self).__init__()
# 初始的卷積為filter:2倍的growth_rate
num_init_feature = 2 * growth_rate
# 表示cifar-10
if num_classes == 10:
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_feature,
kernel_size=3, stride=1,
padding=1, bias=False)),
]))
else:
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_feature,
kernel_size=7, stride=2,
padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_feature)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
]))
num_feature = num_init_feature
for i, num_layers in enumerate(block_config):
self.features.add_module('denseblock%d' % (i+1),
_DenseBlock(num_layers, num_feature,
bn_size, growth_rate))
num_feature = num_feature + growth_rate * num_layers
if i != len(block_config)-1:
self.features.add_module('transition%d' % (i + 1),
_Transition(num_feature,
int(num_feature * theta)))
num_feature = int(num_feature * theta)
self.features.add_module('norm5', nn.BatchNorm2d(num_feature))
self.features.add_module('relu5', nn.ReLU(inplace=True))
self.features.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
self.classifier = nn.Linear(num_feature, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = features.view(features.size(0), -1)
out = self.classifier(out)
return out
# DenseNet_BC for ImageNet
def DenseNet121(num_classes):
num_classes=num_classes
return DenseNet_BC(growth_rate=32, block_config=(6, 12, 24, 16), num_classes=num_classes)
def DenseNet169(num_classes):
num_classes=num_classes
return DenseNet_BC(growth_rate=32, block_config=(6, 12, 32, 32), num_classes=num_classes)
def DenseNet201(num_classes):
num_classes=num_classes
return DenseNet_BC(growth_rate=32, block_config=(6, 12, 48, 32), num_classes=num_classes)
def DenseNet161(num_classes):
num_classes=num_classes
return DenseNet_BC(growth_rate=48, block_config=(6, 12, 36, 24), num_classes=num_classes)
# DenseNet_BC for cifar
def densenet_BC_100():
return DenseNet_BC(growth_rate=12, block_config=(16, 16, 16))
# 随機生成輸入資料
rgb = torch.randn(1, 3, 224, 224)
# 定義網絡
net = DenseNet121(num_classes=10)
# 前向傳播
out = net(rgb)
print('-----'*5)
# 列印輸出大小
print(out.shape)
print('-----'*5)
# 随機生成輸入資料
rgb = torch.randn(1, 3, 224, 224)
# 定義網絡
net = DenseNet169(num_classes=10)
# 前向傳播
out = net(rgb)
print('-----'*5)
# 列印輸出大小
print(out.shape)
print('-----'*5)