天天看點

B-number - HDU 3652 數位dp B-number

B-number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3461    Accepted Submission(s): 1942

Problem Description A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.  

Input Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).  

Output Print each answer in a single line.  

Sample Input

13
100
200
1000
        

Sample Output

1
1
2
2
        

題意:求出現13并且能被13整除的數字有多少個。

思路:dfs注意記錄狀态即可。主要還是看代碼吧。

AC代碼如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int T,t,n,m;
int num[20];
int dp[20][13][2][2][2][2];
int dfs(int pos,int left,bool th,bool one,bool th2,bool f)
{
    if(pos==0)
      return left==0 && th && th2;
    if(dp[pos][left][th][one][th2][f]>=0)
      return dp[pos][left][th][one][th2][f];
    int i,j,k,r,a,b,c,d,f2;
    dp[pos][left][th][one][th2][f]=0;
    if(f)
      r=num[pos];
    else
      r=9;
    for(i=0;i<=r;i++)
    {
        if(f && i==r)
          f2=1;
        else
          f2=0;
        a=(left*10+i)%13;
        if((left!=0 && a==0)||th)
          b=1;
        else
          b=0;
        if(i==1)
          c=1;
        else
          c=0;
        if((one && i==3)|| th2)
          d=1;
        else
          d=0;

        dp[pos][left][th][one][th2][f]+=dfs(pos-1,a,b,c,d,f2);
    }
    return dp[pos][left][th][one][th2][f];
}
int solve()
{
    int i,j,k,len=0;
    m=n;
    while(m)
    {
         num[++len]=m%10;
         m/=10;
    }
    memset(dp,-1,sizeof(dp));
    return dfs(len,0,0,0,0,1);
}
int main()
{
    int i,j,k;
    while(~scanf("%d",&n))
      printf("%d\n",solve());
}