C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output
For the given sequence with n different elements find the number of increasing subsequences with k + 1 elements. It is guaranteed that the answer is not greater than 8·1018.
Input
First line contain two integer values n and k (1 ≤ n ≤ 105, 0 ≤ k ≤ 10) — the length of sequence and the number of elements in increasing subsequences.
Next n lines contains one integer ai (1 ≤ ai ≤ n) each — elements of sequence. All values ai are different.
Output
Print one integer — the answer to the problem.
Examples Input
5 2
1
2
3
5
4
Output
7
題目大意:
一共有N個數,讓你找一個長度為K+1的嚴格遞增子序列(沒必要連續),問一共有多少個子序列滿足條件。
思路:
很老套路的題了。
我們需要維護k+1棵樹狀數組,用來求一個字首和。
設定Dp【i】【j】表示到位子i,以a【i】結尾的序列,已經找到了嚴格遞增的j個數的滿足條件的個數。
那麼有:
dp【i】【j】+=dp【k】【j-1】(k<i&&a[k]<a[i]);
直接暴力轉移肯定要逾時,是以維護K+1個樹狀數組求一個Dp字首和即可。
Ac代碼:
#include<stdio.h>
#include<string.h>
using namespace std;
#define ll __int64
ll tree[15][150000];
ll dp[150000][15];
ll a[150000];
ll lowbit(ll x)
{
return x&(-x);
}
void update(ll x,ll y,ll d)
{
ll temp=y;
while(x<=11)
{
y=temp;
while(y<=100000)
{
tree[x][y]+=d;
y=y+lowbit(y);
}
x=x+lowbit(x);
}
}
ll getsum(ll x,ll y)
{
ll sum=0;
ll temp=y;
while(x>0)
{
y=temp;
while(y>0)
{
sum=sum+tree[x][y];
y=y-lowbit(y);
}
x=x-lowbit(x);
}
return sum;
}
int main()
{
ll n,k;
while(~scanf("%I64d%I64d",&n,&k))
{
k++;
memset(tree,0,sizeof(tree));
memset(dp,0,sizeof(dp));
for(ll i=1;i<=n;i++)scanf("%I64d",&a[i]);
dp[0][0]=1;
for(ll i=1;i<=n;i++)
{
for(ll j=0;j<=k&&j<=i;j++)
{
if(i==1)
{
if(j==0)dp[i][j]+=dp[i-1][j];
else if(j==1)
{
dp[i][j]=1;
update(j,a[i],1);
}
continue;
}
if(j==0)dp[i][j]+=dp[i-1][j];
else
{
if(j==1)dp[i][j]+=dp[i-1][j-1];
if(j>=2)dp[i][j]+=getsum(j-1,a[i]-1)-getsum(j-2,a[i]-1);
update(j,a[i],dp[i][j]);
}
}
}
ll output=0;
for(ll i=1;i<=n;i++)output+=dp[i][k];
printf("%I64d\n",output);
//prllf("%I64d\n",dp[n][k]);
}
}