Queue常用類解析之PriorityQueue
Queue常用類解析之ConcurrentLinkedQueue
一、簡介
BlockingQueue是concurrent包下的一個并發Queue的接口,稱為阻塞隊列。
與ConcurrentLinkedQueue通過CAS方式來實作并發不同,BlockingQueue的并發方案是阻塞等待。
Jdk為BlockingQueue提供了不少的實作類,主要用于生産者-消費者模式的場景,如線程池就通過BlockingQueue管理任務。
下面将針對BlockingQueue的一些實作類展開介紹。
1. 常用Queue類圖
2. BlockingQueue核心方法描述
二、PriorityBlockingQueue
從命名上就能看出,PriorityBlockingQueue是PriorityQueue的并發阻塞版本。
在PriorityBlockingQueue的資料結構是數組表示的最小堆,入隊時不會造成阻塞,當隊列中元素已滿時會抛出OutOfMemoryError異常。出隊時如果隊列中沒有元素線程會陷入阻塞狀态,由入隊方法進行喚醒。
1. 屬性
/**
* Priority queue represented as a balanced binary heap: the two
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
* priority queue is ordered by comparator, or by the elements'
* natural ordering, if comparator is null: For each node n in the
* heap and each descendant d of n, n <= d. The element with the
* lowest value is in queue[0], assuming the queue is nonempty.
*/
private transient Object[] queue;
/**
* The number of elements in the priority queue.
*/
private transient int size;
/**
* The comparator, or null if priority queue uses elements'
* natural ordering.
*/
private transient Comparator<? super E> comparator;
/**
* Lock used for all public operations
*/
private final ReentrantLock lock;
/**
* Condition for blocking when empty
*/
private final Condition notEmpty;
/**
* Spinlock for allocation, acquired via CAS.
*/
private transient volatile int allocationSpinLock;
queue、size和comparator和PriorityQueue中的含義并沒有什麼不同。
我們主要關注的就是後面的3和并發屬性:lock, notEmpty 和 allocationSpinLock。
事實上,在構造方法中對其的初始化中可以看到
this.lock = new ReentrantLock();
this.notEmpty = lock.newCondition();
lock用于在隊列方法中加鎖處理,保證線程安全。
notEmpty用來表示隊列非空的信号,當阻塞方法向空隊列擷取元素時,notEmpty.await陷入阻塞。當入隊方法加入了新元素時,notEmpty.notifyAll發送信号喚醒阻塞線程。
allocationSpinLock則是在擴容時的一個自旋鎖,用0, 1分别表示十分可以進行操作,通過CAS進行修改。
2. PriorityBlockingQueue#offer(Object)
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
int n, cap;
Object[] array;
while ((n = size) >= (cap = (array = queue).length))
//擴容
tryGrow(array, cap);
try {
Comparator<? super E> cmp = comparator;
if (cmp == null)
siftUpComparable(n, e, array);
else
siftUpUsingComparator(n, e, array, cmp);
size = n + 1;
//喚醒阻塞線程
notEmpty.signal();
} finally {
lock.unlock();
}
return true;
}
PriorityBlockingQueue中put、add和offer的方法是完全一緻的。
可以看到,除了加鎖和
notEmpty.signal();
外和PirorityQueue#offer()沒什麼兩樣。
3. PriorityBlockingQueue#tryGrow(Object[], int)
private void tryGrow(Object[] array, int oldCap) {
lock.unlock(); // must release and then re-acquire main lock
Object[] newArray = null;
if (allocationSpinLock == 0 &&
UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
0, 1)) {
try {
int newCap = oldCap + ((oldCap < 64) ?
(oldCap + 2) : // grow faster if small
(oldCap >> 1));
if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
int minCap = oldCap + 1;
if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
throw new OutOfMemoryError();
newCap = MAX_ARRAY_SIZE;
}
if (newCap > oldCap && queue == array)
newArray = new Object[newCap];
} finally {
allocationSpinLock = 0;
}
}
if (newArray == null) // back off if another thread is allocating
Thread.yield();
lock.lock();
if (newArray != null && queue == array) {
queue = newArray;
System.arraycopy(array, 0, newArray, 0, oldCap);
}
}
擴容的主題邏輯分為兩步:建立數組newArray和數組元素複制
建立數組隻有當allocationSpinLock為0才可以進行,否則說明其他線程正在擴容。
如果其他線程正在進行擴容,本線程的本次擴容不需要進行操作,并且會進行線程讓步。
本線程建立數組成功後進行數組元素複制,并覆寫舊數組。
建立數組的多線程并發通過allocationSpinLock來控制,是以此時需要先退出lock鎖,建立數組的邏輯結束後再次擷取鎖。
4. PriorityBlockingQueue#poll(long, TimeUnit)
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
E result;
try {
while ( (result = dequeue()) == null && nanos > 0)
nanos = notEmpty.awaitNanos(nanos);
} finally {
lock.unlock();
}
return result;
}
private E dequeue() {
int n = size - 1;
if (n < 0)
return null;
else {
Object[] array = queue;
E result = (E) array[0];
E x = (E) array[n];
array[n] = null;
Comparator<? super E> cmp = comparator;
if (cmp == null)
siftDownComparable(0, x, array, n);
else
siftDownUsingComparator(0, x, array, n, cmp);
size = n;
return result;
}
}
dequeue方法就相當于PriorityQueue中的poll方法。
出隊時如果沒有元素,則進行阻塞。
三、DelayQueue
DelayQueue叫做延遲隊列,隊列中的元素必須是Delayed的實作類,隊列中的元素不但會按照延遲時間delay進行排序,且隻有等待元素的延遲時間delay到期後才能出隊。
DelayQueue中含有一個PriorityQueue類型的成員變量,由其完成資料機構的操作,是以其資料結構和PriorityQueue是一緻的。
元素入隊不會出現阻塞可能,但是達到最大數量後會抛出OutOfMemoryError。
當隊列中沒有元素或者是以元素的延遲時間均未到期時,出隊線程會陷入阻塞,等待入隊操作的喚醒。
1. 屬性
private final transient ReentrantLock lock = new ReentrantLock();
private final PriorityQueue<E> q = new PriorityQueue<E>();
/**
* Thread designated to wait for the element at the head of
* the queue. This variant of the Leader-Follower pattern
* (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
* minimize unnecessary timed waiting. When a thread becomes
* the leader, it waits only for the next delay to elapse, but
* other threads await indefinitely. The leader thread must
* signal some other thread before returning from take() or
* poll(...), unless some other thread becomes leader in the
* interim. Whenever the head of the queue is replaced with
* an element with an earlier expiration time, the leader
* field is invalidated by being reset to null, and some
* waiting thread, but not necessarily the current leader, is
* signalled. So waiting threads must be prepared to acquire
* and lose leadership while waiting.
*/
private Thread leader = null;
/**
* Condition signalled when a newer element becomes available
* at the head of the queue or a new thread may need to
* become leader.
*/
private final Condition available = lock.newCondition();
lock鎖和available的作用和其他BlockingQueue的作用一樣,用于保證線程安全和線程間通信。
leader用于記錄一個阻塞的線程,是leader-follower模式的變種,具體内容在poll方法中結束。
2. DelayQueue#offer(Object)
public boolean offer(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
q.offer(e);
if (q.peek() == e) {
leader = null;
available.signal();
}
return true;
} finally {
lock.unlock();
}
}
DelayQueue中put、add和offer的方法是完全一緻的。
加鎖,leader置空,發送喚醒信号。
3. DelayQueue#poll(long, TimeUnit)
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E first = q.peek();
if (first == null) {
if (nanos <= 0)
return null;
else
nanos = available.awaitNanos(nanos);
} else {
long delay = first.getDelay(NANOSECONDS);
if (delay <= 0)
return q.poll();
if (nanos <= 0)
return null;
first = null; // don't retain ref while waiting
if (nanos < delay || leader != null)
nanos = available.awaitNanos(nanos);
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
long timeLeft = available.awaitNanos(delay);
nanos -= delay - timeLeft;
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}
重點是leader的處理,其他邏輯就是普通BlockingQueue的出隊處理。
leader的記錄可以最小化線程的阻塞等待時間。
線程的阻塞等待時間與兩方面有關系,分别是:poll方法的等待時間參數(take方法為永久)和頭元素的剩餘的到期時間。
leader線程的阻塞時間是上述兩個值的最小值,其他阻塞線程的阻塞時間是poll方法的等待時間參數(take方法為永久)。
當leader線程結束等待并且取到了頭元素,必須發送信号喚醒其他阻塞線程。這時候其他的阻塞線程被喚醒後要麼成功取到了頭元素,要麼重新陷入阻塞并确定新的leader線程。
當隊列中由元素入隊時,同樣會發生喚醒信号。由于入隊的元素有可能會是新的頭元素,這時候還需要重新确定leader線程的阻塞時間,是以會将leader線程置null,在是以喚醒後又再次陷入阻塞的線程中确定一個新的leader線程。
四、DelayedWorkQueue
DelayedWorkQueue是ScheduledThreadPoolExecutor的靜态内部類,其原理和DelayQueue基本一緻。
具體介紹可以參見線程池ScheduledThreadPoolExecutor源碼解析。