資料結構與算法系列(1)
-
- 1、查找樹ADT——二叉查找樹
-
- 1.1 類的整體定義
- 1.2 節點定義 BinaryNode
- 1.2 判斷是否存在 contains()
- 1.3 插入元素 insert()
- 1.4 删除元素 remove()
- 1.5 測試代碼
- 1.6 完整代碼 BinarySearchTree
1、查找樹ADT——二叉查找樹
性質:對于二叉查找樹中的任意節點X,它的左子樹中所有項中的值小于X中的項,而它的右子樹中所有項中的值大于X中的項。
平均深度:O(log N)
1.1 類的整體定義
/**
* @ClssName:BinarySearchTree.java
* @Description:
* @createtime:2021/4/9 3:38 下午
* @author:Joker
*/
public class BinarySearchTree<T extends Comparable<? super T>> {
public static class BinaryNode<T> {
// ... ...
}
private BinaryNode<T> root;
public BinarySearchTree() {
root = null;
}
public void makeEmpty() {
root = null;
}
public boolean isEmpty() {
return root == null;
}
public boolean contains(T t) {
// ... ...
}
public T findMin() {
// ... ...
}
public T findMax() {
// ... ...
}
public void insert(T t) {
// ... ...
}
public void remove(T t) {
// ... ...
}
public void printTree() {
// ... ...
}
}
1.2 節點定義 BinaryNode
public static class BinaryNode<T> {
T element;
BinaryNode<T> left;
BinaryNode<T> right;
BinaryNode(T element) {
this.element = element;
}
BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) {
this.element = element;
this.left = left;
this.right = right;
}
}
1.2 判斷是否存在 contains()
利用遞歸查找是否包含元素,很簡單
private boolean contains(T t, BinaryNode<T> node) {
// 邊界驗證
if (node == null) {
return false;
}
int compareResult = t.compareTo(node.element);
if (compareResult > 0) {
return contains(t, node.right);
} else if (compareResult < 0) {
return contains(t, node.left);
} else {
return true;
}
}
1.3 插入元素 insert()
遞歸周遊,(插入元素比節點值)小了往左,大了往右,直到遇到葉子節點
public void insert(T t) {
this.root = insert(t, root);
}
private BinaryNode<T> insert(T t, BinaryNode<T> node) {
if (node == null) {
return new BinaryNode<T>(t);
}
int compare = t.compareTo(node.element);
if (compare < 0) {
node.left = insert(t, node.left);
} else if (compare > 0) {
node.right = insert(t, node.right);
} else {
// 相同元素,什麼都不做
}
return node;
}
1.4 删除元素 remove()
- 如果删除的節點是樹葉,則直接删除即可
- 如果删除的節點有一個子節點,則可以操作此節點的父節點的指向此節點的子節點,以達到删除的目的
- 如果删除的節點有兩個子節點,則從右子樹中擷取到最小的值,取代需要删除的節點值,然後直接删除右子樹最小的值即可。
public void remove(T t) {
this.root = remove(t, root);
}
private BinaryNode<T> remove(T t, BinaryNode<T> node) {
if (node == null) {
return node;
}
int compareResult = t.compareTo(node.element);
if (compareResult < 0) {
node.left = remove(t, node.left);
} else if (compareResult > 0) {
node.right = remove(t, node.right);
} else if (node.left != null && node.right != null) {
// 當删除的節點存在左右雙子樹的時候,取其子樹最小的元素與其交換,然後删除最小的元素(轉換成删除非雙子節點)
node.element = findMin(node.right).element;
node.right = remove(node.element, node.right);
} else {
node = (node.left != null) ? node.left : node.right;
}
return node;
}
1.5 測試代碼
public class BinarySearchTreeTest {
@Test
public void test() {
BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<>();
binarySearchTree.insert(6);
binarySearchTree.insert(2);
binarySearchTree.insert(5);
binarySearchTree.insert(7);
binarySearchTree.insert(9);
binarySearchTree.insert(1);
binarySearchTree.insert(3);
System.out.println("===>" + binarySearchTree.contains(7));
binarySearchTree.remove(2);
System.out.println("===>" + binarySearchTree.contains(2));
System.out.println("===>" + binarySearchTree.contains(1));
}
}
1.6 完整代碼 BinarySearchTree
package com.tree.adt;
/**
* @ClssName:BinarySearchTree.java
* @Description:
* @createtime:2021/4/9 3:38 下午
* @author:Joker
*/
public class BinarySearchTree<T extends Comparable<? super T>> {
public static class BinaryNode<T> {
T element;
BinaryNode<T> left;
BinaryNode<T> right;
BinaryNode(T element) {
this.element = element;
}
BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) {
this.element = element;
this.left = left;
this.right = right;
}
}
private BinaryNode<T> root;
public BinarySearchTree() {
root = null;
}
public void makeEmpty() {
root = null;
}
public boolean isEmpty() {
return root == null;
}
public boolean contains(T t) {
return contains(t, root);
}
public T findMin() {
if (isEmpty()) {
return null;
}
return findMin(root).element;
}
public T findMax() {
if (isEmpty()) {
return null;
}
return findMax(root).element;
}
public void insert(T t) {
this.root = insert(t, root);
}
public void remove(T t) {
this.root = remove(t, root);
}
public void printTree() {
printTree(root);
}
private BinaryNode<T> insert(T t, BinaryNode<T> node) {
if (node == null) {
return new BinaryNode<T>(t);
}
int compare = t.compareTo(node.element);
if (compare < 0) {
node.left = insert(t, node.left);
} else if (compare > 0) {
node.right = insert(t, node.right);
} else {
// do nothing
}
return node;
}
/**
* 查找二叉樹的最大值一定在右子樹上
*
* @param node 初始節點
* @return
*/
private BinaryNode<T> findMax(BinaryNode<T> node) {
if (node == null) {
return null;
} else if (node.right == null) {
return node;
}
return findMax(node.right);
}
/**
* 查找二叉樹的最小值一定在左子樹上
*
* @param node 初始節點
* @return
*/
private BinaryNode<T> findMin(BinaryNode<T> node) {
if (node == null) {
return null;
} else if (node.left == null) {
return node;
}
return findMax(node.left);
}
private void printTree(BinaryNode<T> node) {}
/**
* 1. 如果删除的節點是樹葉,則直接删除即可
* 2. 如果删除的節點有一個子節點,則可以操作此節點的父節點的指向此節點的子節點,以達到删除的目的
* 3. 如果删除的節點有兩個子節點,則從右子樹中擷取到最小的值,取代需要删除的節點值,然後直接删除右子樹最小的值即可。
*
* @param t
* @param node
* @return
*/
private BinaryNode<T> remove(T t, BinaryNode<T> node) {
if (node == null) {
return node;
}
int compareResult = t.compareTo(node.element);
if (compareResult < 0) {
node.left = remove(t, node.left);
} else if (compareResult > 0) {
node.right = remove(t, node.right);
} else if (node.left != null && node.right != null) {
// 當删除的節點存在左右雙子樹的時候,取其子樹最小的元素與其交換,然後删除最小的元素(轉換成删除非雙子節點)
node.element = findMin(node.right).element;
node.right = remove(node.element, node.right);
} else {
node = (node.left != null) ? node.left : node.right;
}
return node;
}
/**
* 使用遞歸查找是否包含元素,很簡單
*
* @param t
* @param node
* @return
*/
private boolean contains(T t, BinaryNode<T> node) {
// 邊界驗證
if (node == null) {
return false;
}
int compareResult = t.compareTo(node.element);
if (compareResult > 0) {
return contains(t, node.right);
} else if (compareResult < 0) {
return contains(t, node.left);
} else {
return true;
}
}
}
本文根據《資料結構與算法分析:Java語言描述(原書第3版).[美]Mark Allen Weiss》進行代碼編寫,如有什麼問題,歡迎留言