文章目錄
業務實作之編寫寫入ODS層業務代碼
一、代碼邏輯和架構圖
二、代碼編寫
三、建立Iceberg-ODS層表
1、在Hive中添加Iceberg表格式需要的包
2、建立Iceberg表
四、代碼測試
1、在Kafka中建立對應的topic
2、将代碼中消費Kafka資料改成從頭開始消費
3、執行代碼,檢視對應topic中的結果
業務實作之編寫寫入ODS層業務代碼
一、代碼邏輯和架構圖
ODS層在湖倉一體架構中主要是存儲原始資料,這裡主要是讀取Kafka “KAFKA-DB-BUSSINESS-DATA”topic中的資料實作如下兩個方面功能:
- 将MySQL業務資料原封不動的存儲在Iceberg-ODS層中友善項目臨時業務需求使用。
- 将事實資料和次元資料進行分離,分别存儲Kafka對應的topic中
以上兩個方面中第一個方面需要再Hive中預先建立對應的Iceberg表,才能寫入,第二個方面不好分辨topic“KAFKA-DB-BUSSINESS-DATA”中哪些binlog資料是事實資料哪些binlog是次元資料,是以這裡我們在mysql 配置表“lakehousedb.dim_tbl_config_info”中寫入表資訊,這樣通過Flink擷取此表次元表資訊進行廣播與Kafka實時流進行關聯将事實資料和次元資料進行區分。
二、代碼編寫
資料寫入ODS層代碼是“ProduceKafkaDBDataToODS.scala”,主要代碼邏輯實作如下:
object ProduceKafkaDBDataToODS {
private val mysqlUrl: String = ConfigUtil.MYSQL_URL
private val mysqlUser: String = ConfigUtil.MYSQL_USER
private val mysqlPassWord: String = ConfigUtil.MYSQL_PASSWORD
private val kafkaBrokers: String = ConfigUtil.KAFKA_BROKERS
private val kafkaDimTopic: String = ConfigUtil.KAFKA_DIM_TOPIC
private val kafkaOdsTopic: String = ConfigUtil.KAFKA_ODS_TOPIC
private val kafkaDwdUserLogTopic: String = ConfigUtil.KAFKA_DWD_USERLOG_TOPIC
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val tblEnv: StreamTableEnvironment = StreamTableEnvironment.create(env)
import org.apache.flink.streaming.api.scala._
env.enableCheckpointing(5000)
/**
* 1.需要預先建立 Catalog
* 建立Catalog,建立表需要在Hive中提前建立好,不在代碼中建立,因為在Flink中建立iceberg表不支援create table if not exists ...文法
*/
tblEnv.executeSql(
"""
|create catalog hadoop_iceberg with (
| 'type'='iceberg',
| 'catalog-type'='hadoop',
| 'warehouse'='hdfs://mycluster/lakehousedata'
|)
""".stripMargin)
/**
* 2.建立 Kafka Connector,連接配接消費Kafka中資料
* 注意:1).關鍵字要使用 " 飄"符号引起來 2).對于json對象使用 map < String,String>來接收
*/
tblEnv.executeSql(
"""
|create table kafka_db_bussiness_tbl(
| database string,
| `table` string,
| type string,
| ts string,
| xid string,
| `commit` string,
| data map<string,string>
|) with (
| 'connector' = 'kafka',
| 'topic' = 'KAFKA-DB-BUSSINESS-DATA',
| 'properties.bootstrap.servers'='node1:9092,node2:9092,node3:9092',
| 'scan.startup.mode'='latest-offset', --也可以指定 earliest-offset 、latest-offset
| 'properties.group.id' = 'my-group-id',
| 'format' = 'json'
|)
""".stripMargin)
/**
* 3.将不同的業務庫資料存入各自的Iceberg表
*/
tblEnv.executeSql(
"""
|insert into hadoop_iceberg.icebergdb.ODS_MEMBER_INFO
|select
| data['id'] as id ,
| data['user_id'] as user_id,
| data['member_growth_score'] as member_growth_score,
| data['member_level'] as member_level,
| data['balance'] as balance,
| data['gmt_create'] as gmt_create,
| data['gmt_modified'] as gmt_modified
| from kafka_db_bussiness_tbl where `table` = 'mc_member_info'
""".stripMargin)
tblEnv.executeSql(
"""
|insert into hadoop_iceberg.icebergdb.ODS_MEMBER_ADDRESS
|select
| data['id'] as id ,
| data['user_id'] as user_id,
| data['province'] as province,
| data['city'] as city,
| data['area'] as area,
| data['address'] as address,
| data['log'] as log,
| data['lat'] as lat,
| data['phone_number'] as phone_number,
| data['consignee_name'] as consignee_name,
| data['gmt_create'] as gmt_create,
| data['gmt_modified'] as gmt_modified
| from kafka_db_bussiness_tbl where `table` = 'mc_member_address'
""".stripMargin)
tblEnv.executeSql(
"""
|insert into hadoop_iceberg.icebergdb.ODS_USER_LOGIN
|select
| data['id'] as id ,
| data['user_id'] as user_id,
| data['ip'] as ip,
| data['login_tm'] as login_tm,
| data['logout_tm'] as logout_tm
| from kafka_db_bussiness_tbl where `table` = 'mc_user_login'
""".stripMargin)
//4.讀取 Kafka 中的資料,将次元資料另外存儲到 Kafka 中
val kafkaTbl: Table = tblEnv.sqlQuery("select database,`table`,type,ts,xid,`commit`,data from kafka_db_bussiness_tbl")
//5.将kafkaTbl Table 轉換成DStream 與MySql中的資料
val kafkaDS: DataStream[Row] = tblEnv.toAppendStream[Row](kafkaTbl)
//6.設定mapState,用于廣播流
val mapStateDescriptor = new MapStateDescriptor[String,JSONObject]("mapStateDescriptor",classOf[String],classOf[JSONObject])
//7.從MySQL中擷取配置資訊,并廣播
val bcConfigDs: BroadcastStream[JSONObject] = env.addSource(MySQLUtil.getMySQLData(mysqlUrl,mysqlUser,mysqlPassWord)).broadcast(mapStateDescriptor)
//8.設定次元資料側輸出流标記
val dimDataTag = new OutputTag[String]("dim_data")
//9.隻監控mysql 資料庫lakehousedb 中的資料,其他庫binlog不監控,連接配接兩個流進行處理
val factMainDs: DataStream[String] = kafkaDS.filter(row=>{"lakehousedb".equals(row.getField(0).toString)}).connect(bcConfigDs).process(new BroadcastProcessFunction[Row, JSONObject, String] {
override def processElement(row: Row, ctx: BroadcastProcessFunction[Row, JSONObject, String]#ReadOnlyContext, out: Collector[String]): Unit = {
//最後傳回給Kafka 事實資料的json對象
val returnJsonObj = new JSONObject()
//擷取廣播狀态
val robcs: ReadOnlyBroadcastState[String, JSONObject] = ctx.getBroadcastState(mapStateDescriptor)
//解析事件流資料
val nObject: JSONObject = CommonUtil.rowToJsonObj(row)
//擷取目前時間流來自的庫和表 ,樣例資料如下
//lackhousedb,pc_product,insert,1646659263,21603,null,{gmt_create=1645493074001, category_id=220, product_name=黃金, product_id=npfSpLHB8U}
val dbName: String = nObject.getString("database")
val tableName: String = nObject.getString("table")
val key = dbName + ":" + tableName
if (robcs.contains(key)) {
//次元資料
val jsonValue: JSONObject = robcs.get(key)
//次元資料,将對應的 jsonValue中的資訊設定到流事件中
nObject.put("tbl_name", jsonValue.getString("tbl_name"))
nObject.put("tbl_db", jsonValue.getString("tbl_db"))
nObject.put("pk_col", jsonValue.getString("pk_col"))
nObject.put("cols", jsonValue.getString("cols"))
nObject.put("phoenix_tbl_name", jsonValue.getString("phoenix_tbl_name"))
ctx.output(dimDataTag, nObject.toString)
}else{
//事實資料,加入iceberg 表名寫入Kafka ODS-DB-TOPIC topic中
if("mc_user_login".equals(tableName)){
returnJsonObj.put("iceberg_ods_tbl_name","ODS_USER_LOGIN")
returnJsonObj.put("kafka_dwd_topic",kafkaDwdUserLogTopic)
returnJsonObj.put("data",nObject.toString)
}
out.collect(returnJsonObj.toJSONString)
}
}
override def processBroadcastElement(jsonObject: JSONObject, ctx: BroadcastProcessFunction[Row, JSONObject, String]#Context, out: Collector[String]): Unit = {
val tblDB: String = jsonObject.getString("tbl_db")
val tblName: String = jsonObject.getString("tbl_name")
//向狀态中更新資料
val bcs: BroadcastState[String, JSONObject] = ctx.getBroadcastState(mapStateDescriptor)
bcs.put(tblDB + ":" + tblName, jsonObject)
println("廣播資料流設定完成...")
}
})
//10.結果寫入到Kafka - dim_data_topic topic中
val props = new Properties()
props.setProperty("bootstrap.servers",kafkaBrokers)
factMainDs.addSink(new FlinkKafkaProducer[String](kafkaOdsTopic,new KafkaSerializationSchema[String] {
override def serialize(element: String, timestamp: java.lang.Long): ProducerRecord[Array[Byte], Array[Byte]] = {
new ProducerRecord[Array[Byte],Array[Byte]](kafkaOdsTopic,null,element.getBytes())
}
},props,FlinkKafkaProducer.Semantic.AT_LEAST_ONCE))//暫時使用at_least_once語義,exactly_once語義有些bug問題
factMainDs.getSideOutput(dimDataTag).addSink(new FlinkKafkaProducer[String](kafkaDimTopic,new KafkaSerializationSchema[String] {
override def serialize(element: String, timestamp: java.lang.Long): ProducerRecord[Array[Byte], Array[Byte]] = {
new ProducerRecord[Array[Byte],Array[Byte]](kafkaDimTopic,null,element.getBytes())
}
},props,FlinkKafkaProducer.Semantic.AT_LEAST_ONCE))//暫時使用at_least_once語義,exactly_once語義有些bug問題
env.execute()
}
}
三、建立Iceberg-ODS層表
代碼在執行之前需要在Hive中預先建立對應的Iceberg表,建立Icebreg表方式如下:
1、在Hive中添加Iceberg表格式需要的包
啟動HDFS叢集,node1啟動Hive metastore服務,在Hive用戶端啟動Hive添加Iceberg依賴包:
#node1節點啟動Hive metastore服務
[root@node1 ~]# hive --service metastore &
#在hive用戶端node3節點加載兩個jar包
add jar /software/hive-3.1.2/lib/iceberg-hive-runtime-0.12.1.jar;
add jar /software/hive-3.1.2/lib/libfb303-0.9.3.jar;
2、建立Iceberg表
這裡建立Iceberg表有“ODS_MEMBER_INFO”、“ODS_MEMBER_ADDRESS”、“ODS_USER_LOGIN”,建立語句如下:
#在Hive用戶端執行以下建表語句
CREATE TABLE ODS_MEMBER_INFO (
id string,
user_id string,
member_growth_score string,
member_level string,
balance string,
gmt_create string,
gmt_modified string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_MEMBER_INFO/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE ODS_MEMBER_ADDRESS (
id string,
user_id string,
province string,
city string,
area string,
address string,
log string,
lat string,
phone_number string,
consignee_name string,
gmt_create string,
gmt_modified string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_MEMBER_ADDRESS/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE ODS_USER_LOGIN (
id string,
user_id string,
ip string,
login_tm string,
logout_tm string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_USER_LOGIN/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
以上語句在Hive用戶端執行完成之後,在HDFS中可以看到對應的Iceberg資料目錄:
四、代碼測試
以上代碼編寫完成後,代碼執行測試步驟如下:
1、在Kafka中建立對應的topic
#在Kafka 中建立 KAFKA-ODS-TOPIC topic
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-ODS-TOPIC --partitions 3 --replication-factor 3
#在Kafka 中建立 KAFKA-DIM-TOPIC topic
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DIM-TOPIC --partitions 3 --replication-factor 3
#監控以上兩個topic資料
[root@node1 bin]# ./kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092,node3:9092 --topic KAFKA-ODS-TOPIC
[root@node1 bin]# ./kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092,node3:9092 --topic KAFKA-DIM-TOPIC
2、将代碼中消費Kafka資料改成從頭開始消費
3、執行代碼,檢視對應topic中的結果
- 📢歡迎點贊 👍 收藏 ⭐留言 📝 如有錯誤敬請指正!
- 📢本文由 Lansonli 原創📢停下休息的時候不要忘了别人還在奔跑,希望大家抓緊時間學習,全力奔赴更美好的生活✨