一、Kruskal算法核心
- Kruskal算法和Prime算法一樣也是計算最小生成樹的一種算法。考慮問題的出發點: 為使生成樹上邊的權值之和達到最小,則應使生成樹中每一條邊的權值盡可能地小。
- 具體做法: 先構造一個隻含 n 個頂點的子圖 SG,然後從權值最小的邊開始,若它的添加不使SG 中産生回路,則在 SG 上加上這條邊,如此重複,直至加上 n-1 條邊為止。
- 算法示範
二、代碼實作(Java版)
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
class Edge {
int node1;
int node2;
int edgeValue;
}
class MySort implements Comparator<Edge> {
public int compare(Edge o1, Edge o2) {
return o1.edgeValue > o2.edgeValue ? 1 : -1;
}
}
public class Kruskal {
static final int maxNodeValue = (1 << 31) - 1;
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
Set<Edge> edges = new TreeSet<Edge>(new MySort());
Map<Integer, Integer> preNode = new HashMap<Integer, Integer>();
while (scanner.hasNext()) {
int edgeCounts = scanner.nextInt();
for (int i = 0; i < edgeCounts; i++) {
int node1 = scanner.nextInt();
int node2 = scanner.nextInt();
int edgeValue = scanner.nextInt();
Edge oldEdge = findOldEdge(node1, node2, edges);
if (oldEdge != null) {
if (oldEdge.edgeValue > edgeValue) {
Edge edge = new Edge();
edge.edgeValue = edgeValue;
edge.node1 = node1;
edge.node2 = node2;
edges.add(edge);
}
} else {
Edge edge = new Edge();
edge.edgeValue = edgeValue;
edge.node1 = node1;
edge.node2 = node2;
edges.add(edge);
}
}
int cost = kruskal(edges, preNode);
System.out.println(cost);
edges.clear();
preNode.clear();
}
}
private static Edge findOldEdge(int node1, int node2, Set<Edge> edges) {
Iterator<Edge> iterator = edges.iterator();
while (iterator.hasNext()) {
Edge edge = iterator.next();
if ((edge.node1 == node1 && edge.node2 == node2) || (edge.node1 == node2 && edge.node2 == node1)) {
return edge;
}
}
return null;
}
public static int findRootNode(Integer node, Map<Integer, Integer> preNode) {
while (preNode.get(node) != null) {
node = preNode.get(node);
}
return node;
}
public static int kruskal(Set<Edge> edges, Map<Integer, Integer> preNode) {
Iterator<Edge> it = edges.iterator();
int cost = 0;
while (it.hasNext()) {
Edge edge = it.next();
int node1 = edge.node1;
int node2 = edge.node2;
int edgeValue = edge.edgeValue;
int node1_parent=findRootNode(node1, preNode) ;
int node2_parent=findRootNode(node2, preNode);
if (node1_parent!=node2_parent) {
preNode.put(node1_parent, node2_parent);
cost += edgeValue;
}
}
return cost;
}
}
三、測試用例
輸入
11
1 2 19
1 5 14
1 7 18
2 3 5
2 4 7
2 5 12
3 4 3
4 5 8
4 6 21
5 7 16
6 7 27
輸出
67
拓撲圖和算法篩選過程:
四、ACM
題目連結:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2144
AC代碼:
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
class Edge {
int node1;
int node2;
int edgeValue;
}
class MySort implements Comparator<Edge> {
public int compare(Edge o1, Edge o2) {
return o1.edgeValue > o2.edgeValue ? 1 : -1;
}
}
public class Main{
static final int maxNodeValue = (1 << 31) - 1;
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
Set<Edge> edges = new TreeSet<Edge>(new MySort());
Map<Integer, Integer> preNode = new HashMap<Integer, Integer>();
while (scanner.hasNext()) {
int nodeCounts = scanner.nextInt();
int edgeCounts = scanner.nextInt();
for (int i = 0; i < edgeCounts; i++) {
int node1 = scanner.nextInt();
int node2 = scanner.nextInt();
int edgeValue = scanner.nextInt();
Edge oldEdge = findOldEdge(node1, node2, edges);
if (oldEdge != null) {
if (oldEdge.edgeValue > edgeValue) {
Edge edge = new Edge();
edge.edgeValue = edgeValue;
edge.node1 = node1;
edge.node2 = node2;
edges.add(edge);
}
} else {
Edge edge = new Edge();
edge.edgeValue = edgeValue;
edge.node1 = node1;
edge.node2 = node2;
edges.add(edge);
}
}
int cost = kruskal(edges, preNode);
System.out.println(cost);
edges.clear();
preNode.clear();
}
}
private static Edge findOldEdge(int node1, int node2, Set<Edge> edges) {
Iterator<Edge> iterator = edges.iterator();
while (iterator.hasNext()) {
Edge edge = iterator.next();
if ((edge.node1 == node1 && edge.node2 == node2) || (edge.node1 == node2 && edge.node2 == node1)) {
return edge;
}
}
return null;
}
public static int findRootNode(Integer node, Map<Integer, Integer> preNode) {
while (preNode.get(node) != null) {
node = preNode.get(node);
}
return node;
}
public static int kruskal(Set<Edge> edges, Map<Integer, Integer> preNode) {
Iterator<Edge> it = edges.iterator();
int cost = 0;
while (it.hasNext()) {
Edge edge = it.next();
int node1 = edge.node1;
int node2 = edge.node2;
int edgeValue = edge.edgeValue;
int node1_parent=findRootNode(node1, preNode) ;
int node2_parent=findRootNode(node2, preNode);
if (node1_parent!=node2_parent) {
preNode.put(node1_parent, node2_parent);
cost += edgeValue;
}
}
return cost;
}
}
AC代碼和上面的代碼隻有一點不同,那就是輸入了節點的個數nodeCount,然而這個數在建立生成樹的過程中并沒有被使用到。