2010年7月做的筆試題:(下邊是我自己當時做出來的答案,當時隻會JAVA,如果有更好的方法,請不吝賜教!)
第一個題目
在一個坐标系中已知兩個矩形的左下頂點和右上頂點的坐标,如果兩個矩形有重疊區域,求出重疊區域矩形的左下頂點坐标和右上頂點坐标。
public class Mytest{ public static void main(String[] args){ float x1=1.0f,y1=1.0f; //第一個矩形左下頂點 float x2=3.0f,y2=3.0f; //第一個矩形右上頂點 float x3=2.0f,y3=2.0f; //第二個矩形左下頂點 float x4=4.0f,y4=4.0f; //第二個矩形右上頂點 float x5,y5; //重合區域矩形左下頂點 float x6,y6; //重合區域矩形右上頂點 x5 = x1<=x3?x3:x1; y5 = y1<=y3?y3:y1; x6 = x2<=x4?x2:x4; y6 = y2<=y4?y2:y4; if(x5<x6&&y5<y6){ System.out.println("兩個矩形有重疊區域。\n 重疊區域的矩形坐标為:"); System.out.println("x5= " + x5 + ", y5=" + y5); System.out.println("x6= " + x6 + ", y6=" + y6); } } } |
第二個題目
第二個題目是已經三角形ABC三個頂點的坐标,A(x1,y1), B(x2,y2), C(x3,y3) , 和另外一點P(x,y) 的坐标,怎麼判斷在三角形内還是外
雖然做出來了,但是不高效,現在我也不知道高效的方法是什麼?哪位大俠告訴小弟。
方法一:求面積之和
public class Mytest02 { public static void main(String[] args){ double x1=1.0, y1=1.0 ; //A double x2=3.0, y2=1.0 ; //B double x3=2.0, y3=3.0 ; //C double x=2.0, y=2.0 ; //P double pa = Math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)); double pb = Math.sqrt((x-x2)*(x-x2)+(y-y2)*(y-y2)); double pc = Math.sqrt((x-x3)*(x-x3)+(y-y3)*(y-y3)); double ab = Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); double ac = Math.sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3)); double bc = Math.sqrt((x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)); double abc = (ab+bc+ac)/2 ; double pab = (pa+pb+ab)/2; double pbc = (pb+pc+bc)/2; double pac = (pa+pc+ac)/2; System.out.println(abc); System.out.println(pab); System.out.println(pbc); System.out.println(pac); double sabc = Math.sqrt(abc*(abc-ab)*(abc-bc)*(abc-ac)); double spab = Math.sqrt(pab*(pab-pa)*(pab-pb)*(pab-ab)); double spbc = Math.sqrt(pbc*(pbc-pb)*(pbc-pc)*(pbc-bc)); double spac = Math.sqrt(pac*(pac-pa)*(pac-pc)*(pac-ac)); System.out.println(sabc); System.out.println(spab); System.out.println(spbc); System.out.println(spac); //判斷 if(sabc-(spab+spbc+spac)<0.0000001){ System.out.println("P點在這個三角形内部或者邊上"); }else { System.out.println("P點不在這個三角形外部"); } } } |
方法二:求角度之和
public class Mytest03 { public static void main(String[] args){ double x1=1.0, y1=1.0 ; //A double x2=3.0, y2=1.0 ; //B double x3=2.0, y3=3.0 ; //C double x=2.0, y=2.0 ; //P double pa = Math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)); double pb = Math.sqrt((x-x2)*(x-x2)+(y-y2)*(y-y2)); double pc = Math.sqrt((x-x3)*(x-x3)+(y-y3)*(y-y3)); double ab = Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); double ac = Math.sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3)); double bc = Math.sqrt((x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)); double apb = Math.acos((pa*pa+pb*pb-ab*ab)/(2*pa*pb)) ; double apc = Math.acos((pa*pa+pc*pc-ac*ac)/(2*pa*pc)) ; double bpc = Math.acos((pb*pb+pc*pc-bc*bc)/(2*pb*pc)) ; System.out.println(apb) ; System.out.println(apc) ; System.out.println(bpc) ; System.out.println(Math.PI*2) ; //判斷 if(apb+apc+bpc-Math.PI*2<0.0000001){ System.out.println("P點在這個三角形内部或者邊上"); }else { System.out.println("P點在這個三角形外部"); } } } |