1、U-Net簡介:用于生物醫學圖像分割的卷積網絡(MICCAI,2015年)
在生物醫學圖像進行中,為圖像中的每個細胞擷取分類标簽非常重要。 生物醫學任務的最大挑戰是成千上萬張用于訓練的圖像不容易獲得。
論文(https://arxiv.org/abs/1505.04597)建立在完全卷積層的基礎上,并對其進行了修改,以處理一些訓練圖像并産生更精确的分割。
由于隻有很少的訓練資料可用,是以該模型通過在可用資料上施加彈性變形來使用資料增強。 如上圖1所示,網絡體系結構由左側的收縮路徑和右側的擴充路徑組成。
2、環境及資料集準備
基于tensorflow2、Keras、opencv,建議準備gpu測試
代碼及資料集均參考(感謝作者):https://github.com/zhixuhao/unet
百度雲連結(包含圖檔和代碼):https://pan.baidu.com/s/1AjYMTsPpcE6NNyCtqWeKhQ
提取碼:098k
樣本圖檔
标簽圖檔
3、訓練代碼
data.py - 資料處理及擴充等
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import os
import glob
import skimage.io as io
import skimage.transform as trans
Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road = [128,64,128]
Pavement = [60,40,222]
Tree = [128,128,0]
SignSymbol = [192,128,128]
Fence = [64,64,128]
Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]
COLOR_DICT = np.array([Sky, Building, Pole, Road, Pavement,
Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled])
def adjustData(img,mask,flag_multi_class,num_class):
if(flag_multi_class):
img = img / 255
mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range(num_class):
#for one pixel in the image, find the class in mask and convert it into one-hot vector
#index = np.where(mask == i)
#index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
#new_mask[index_mask] = 1
new_mask[mask == i,i] = 1
new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2]))
mask = new_mask
elif(np.max(img) > 1):
img = img / 255
mask = mask /255
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return (img,mask)
def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale",
mask_color_mode = "grayscale",image_save_prefix="image", mask_save_prefix="mask",
flag_multi_class = False,num_class = 2,save_to_dir=None, target_size=(256,256), seed=1):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
image_generator = image_datagen.flow_from_directory(
train_path,
classes=[image_folder],
class_mode=None,
color_mode=image_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=image_save_prefix,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes=[mask_folder],
class_mode=None,
color_mode=mask_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=mask_save_prefix,
seed=seed)
train_generator = zip(image_generator, mask_generator)
for (img, mask) in train_generator:
img, mask = adjustData(img, mask, flag_multi_class, num_class)
yield (img, mask)
def testGenerator(test_path, num_image = 30, target_size = (256,256),flag_multi_class = False,as_gray = True):
for i in range(num_image):
img = io.imread(os.path.join(test_path, "%d.png"%i), as_gray=as_gray)
img = img / 255
img = trans.resize(img, target_size)
img = np.reshape(img, img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img, (1,)+img.shape)
yield img
def geneTrainNpy(image_path, mask_path, flag_multi_class=False, num_class=2, image_prefix="image",mask_prefix = "mask",image_as_gray = True,mask_as_gray = True):
image_name_arr = glob.glob(os.path.join(image_path, "%s*.png"%image_prefix))
image_arr = []
mask_arr = []
for index, item in enumerate(image_name_arr):
img = io.imread(item,as_gray=image_as_gray)
img = np.reshape(img, img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path,mask_path).replace(image_prefix, mask_prefix),as_gray = mask_as_gray)
mask = np.reshape(mask, mask.shape + (1,)) if mask_as_gray else mask
img, mask = adjustData(img, mask, flag_multi_class,num_class)
image_arr.append(img)
mask_arr.append(mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)
return image_arr, mask_arr
def labelVisualize(num_class, color_dict, img):
img = img[:, :, 0] if len(img.shape) == 3 else img
img_out = np.zeros(img.shape + (3,))
for i in range(num_class):
img_out[img == i, :] = color_dict[i]
return img_out / 255
def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2):
for i,item in enumerate(npyfile):
img = labelVisualize(num_class, COLOR_DICT, item) if flag_multi_class else item[:, :, 0]
io.imsave(os.path.join(save_path, "%d_predict.png"%i), img)
model.py - 模型
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
def unet(pretrained_weights = None,input_size = (256,256,1)):
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = concatenate([drop4,up6], axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
#model.summary()
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model
main.py - 訓練代碼
from model import *
from data import *
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = "true"
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
data_gen_args = dict(rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
myGene = trainGenerator(2,'data/membrane/train','image','label',data_gen_args,save_to_dir = None)
model = unet()
model_checkpoint = ModelCheckpoint('unet_membrane.hdf5', monitor='loss', verbose=1, save_best_only=True)
model.fit_generator(myGene, steps_per_epoch=2000, epochs=5, callbacks=[model_checkpoint])
test.py - 測試代碼及h5轉pb
from model import *
from data import *
import matplotlib
import os
from keras.models import load_model
import numpy as np
from PIL import Image
import cv2
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
def test():
#加載模型h5檔案
model = load_model("unet_meiyan.hdf5")
testGene = testGenerator("data/membrane/test_m")
results = model.predict_generator(testGene, 18, verbose=1)
saveResult("data/membrane/result_m", results)
def h5_to_pb():
model = tf.keras.models.load_model('unet_meiyan.hdf5',
custom_objects={'KerasLayer': hub.KerasLayer, 'Dense': tf.keras.layers.Dense},
compile=False)
model.summary()
full_model = tf.function(lambda Input: model(Input))
full_model = full_model.get_concrete_function(tf.TensorSpec(model.inputs[0].shape, tf.float32))
# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 50)
print("Frozen model layers: ")
for layer in layers:
print(layer)
print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir="D:\\", name="unet_meiyan.pb", as_text=False)
#h5_to_pb()
test()
4、使用Opencv加載模型進行預測
OpenCvSharp.Dnn.Net net = OpenCvSharp.Dnn.CvDnn.ReadNetFromTensorflow("C://unet.pb");
Mat frame = new Mat("C://1.png");
if (frame.Channels() > 1)
frame = frame.CvtColor(ColorConversionCodes.BGR2GRAY);
Cv2.Resize(frame, frame, new OpenCvSharp.Size(512, 512));
Mat blob = OpenCvSharp.Dnn.CvDnn.BlobFromImage(frame, 1.0 / 255, new OpenCvSharp.Size(256, 256), new Scalar(), false, false);
net.SetInput(blob);
Stopwatch sw = new Stopwatch();
sw.Start();
Mat prob = net.Forward(/*outNames[0]*/);
sw.Stop();
Console.WriteLine($"Runtime:{sw.ElapsedMilliseconds} ms");
Mat p = prob.Reshape(1, prob.Size(2));
Mat res = new Mat(p.Size(), MatType.CV_8UC1, Scalar.All(255));
for(int h=0; h<p.Height; h++)
{
for (int w = 0; w < p.Width; w++)
{
res.Set<byte>(h, w, (byte)(p.At<float>(h, w) * 100));
}
}
Cv2.ImShow("res", res);