天天看點

複現經典:《統計學習方法》第 10 章 隐馬爾可夫模型

本文是李航老師的《統計學習方法》[1]一書的代碼複現。

作者:黃海廣[2]

備注:代碼都可以在github[3]中下載下傳。

我将陸續将代碼釋出在公衆号“機器學習初學者”,敬請關注。

代碼目錄
  • 第 1 章 統計學習方法概論
  • 第 2 章 感覺機
  • 第 3 章 k 近鄰法
  • 第 4 章 樸素貝葉斯
  • 第 5 章 決策樹
  • 第 6 章 邏輯斯谛回歸
  • 第 7 章 支援向量機
  • 第 8 章 提升方法
  • 第 9 章 EM 算法及其推廣
  • 第 10 章 隐馬爾可夫模型
  • 第 11 章 條件随機場
  • 第 12 章 監督學習方法總結
代碼參考:wzyonggege[4],WenDesi[5],火燙火燙的[6]

第 10 章 隐馬爾可夫模型

1.隐馬爾可夫模型是關于時序的機率模型,描述由一個隐藏的馬爾可夫鍊随機生成不可觀測的狀态的序列,再由各個狀态随機生成一個觀測而産生觀測的序列的過程。

隐馬爾可夫模型由初始狀态機率向

、狀态轉移機率矩陣

和觀測機率矩陣

決定。是以,隐馬爾可夫模型可以寫成

隐馬爾可夫模型是一個生成模型,表示狀态序列和觀測序列的聯合分布,但是狀态序列是隐藏的,不可觀測的。

隐馬爾可夫模型可以用于标注,這時狀态對應着标記。标注問題是給定觀測序列預測其對應的标記序列。

2.機率計算問題。給定模型

和觀測序列

,計算在模型

下觀測序列

出現的機率

。前向-後向算法是通過遞推地計算前向-後向機率可以高效地進行隐馬爾可夫模型的機率計算。

3.學習問題。已知觀測序列

,估計模型

參數,使得在該模型下觀測序列機率

最大。即用極大似然估計的方法估計參數。Baum-Welch 算法,也就是 EM 算法可以高效地對隐馬爾可夫模型進行訓練。它是一種非監督學習算法。

4.預測問題。已知模型

和觀測序列

,求對給定觀測序列條件機率

最大的狀态序列

。維特比算法應用動态規劃高效地求解最優路徑,即機率最大的狀态序列。

import numpy as np      
class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  #可能存在的狀态數量
        M = len(O)  # 觀測序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有幾個時刻,有幾個觀測序列,就有幾個時刻
        for t in range(T):  # 周遊每一時刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列對應的索引
            for i in range(N):
                if t == 0:  # 計算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]  # P176(10.15)
                    print(
                        'alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot(
                        [alpha[t - 1] for alpha in alphas],
                        [a[i] for a in A]) * B[i][indexOfO]  # 對應P176(10.16)
                    print('alpha%d(%d)=[sigma alpha%d(i)ai%d]b%d(o%d)=%f' %
                          (t, i, t - 1, i, i, t, alphas[i][t]))
                    # print(alphas)
        P = np.sum([alpha[M - 1] for alpha in alphas])  # P176(10.17)
        # alpha11 = pi[0][0] * B[0][0]    #代表a1(1)
        # alpha12 = pi[0][1] * B[1][0]    #代表a1(2)
        # alpha13 = pi[0][2] * B[2][0]    #代表a1(3)


    def backward(self, Q, V, A, B, O, PI):  # 後向算法
        N = len(Q)  # 可能存在的狀态數量
        M = len(O)  # 觀測序列的大小
        betas = np.ones((N, M))  # beta
        for i in range(N):
            print('beta%d(%d)=1' % (M, i))
        for t in range(M - 2, -1, -1):
            indexOfO = V.index(O[t + 1])  # 找出序列對應的索引
            for i in range(N):
                betas[i][t] = np.dot(
                    np.multiply(A[i], [b[indexOfO] for b in B]),
                    [beta[t + 1] for beta in betas])
                realT = t + 1
                realI = i + 1
                print(
                    'beta%d(%d)=[sigma a%djbj(o%d)]beta%d(j)=(' %
                    (realT, realI, realI, realT + 1, realT + 1),
                    end='')
                for j in range(N):
                    print(
                        "%.2f*%.2f*%.2f+" % (A[i][j], B[j][indexOfO],
                                             betas[j][t + 1]),
                        end='')
                print("0)=%.3f" % betas[i][t])
        # print(betas)
        indexOfO = V.index(O[0])
        P = np.dot(
            np.multiply(PI, [b[indexOfO] for b in B]),
            [beta[0] for beta in betas])
        print("P(O|lambda)=", end="")
        for i in range(N):
            print(
                "%.1f*%.1f*%.5f+" % (PI[0][i], B[i][indexOfO], betas[i][0]),
                end="")
        print("0=%f" % P)


    def viterbi(self, Q, V, A, B, O, PI):
        N = len(Q)  #可能存在的狀态數量
        M = len(O)  # 觀測序列的大小
        deltas = np.zeros((N, M))
        psis = np.zeros((N, M))
        I = np.zeros((1, M))
        for t in range(M):
            realT = t + 1
            indexOfO = V.index(O[t])  # 找出序列對應的索引
            for i in range(N):
                realI = i + 1
                if t == 0:
                    deltas[i][t] = PI[0][i] * B[i][indexOfO]
                    psis[i][t] = 0
                    print('delta1(%d)=pi%d * b%d(o1)=%.2f * %.2f=%.2f' %
                          (realI, realI, realI, PI[0][i], B[i][indexOfO],
                           deltas[i][t]))
                    print('psis1(%d)=0' % (realI))
                else:
                    deltas[i][t] = np.max(
                        np.multiply([delta[t - 1] for delta in deltas],
                                    [a[i] for a in A])) * B[i][indexOfO]
                    print(
                        'delta%d(%d)=max[delta%d(j)aj%d]b%d(o%d)=%.2f*%.2f=%.5f'
                        % (realT, realI, realT - 1, realI, realI, realT,
                           np.max(
                               np.multiply([delta[t - 1] for delta in deltas],
                                           [a[i] for a in A])), B[i][indexOfO],
                           deltas[i][t]))
                    psis[i][t] = np.argmax(
                        np.multiply(
                            [delta[t - 1] for delta in deltas],
                            [a[i]
                             for a in A])) + 1  #由于其傳回的是索引,是以應+1才能和正常的下标值相符合。
                    print('psis%d(%d)=argmax[delta%d(j)aj%d]=%d' %
                          (realT, realI, realT - 1, realI, psis[i][t]))
        print(deltas)
        print(psis)
        I[0][M - 1] = np.argmax([delta[M - 1] for delta in deltas
                                 ]) + 1  #由于其傳回的是索引,是以應+1才能和正常的下标值相符合。
        print('i%d=argmax[deltaT(i)]=%d' % (M, I[0][M - 1]))
        for t in range(M - 2, -1, -1):
            I[0][t] = psis[int(I[0][t + 1]) - 1][t + 1]
            print('i%d=psis%d(i%d)=%d' % (t + 1, t + 2, t + 2, I[0][t]))
        print("狀态序列I:", I)      

習題 10.1

#習題10.1
Q = [1, 2, 3]
V = ['紅', '白']
A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
# O = ['紅', '白', '紅', '紅', '白', '紅', '白', '白']
O = ['紅', '白', '紅', '白']    #習題10.1的例子
PI = [[0.2, 0.4, 0.4]]      
HMM = HiddenMarkov()
# HMM.forward(Q, V, A, B, O, PI)
# HMM.backward(Q, V, A, B, O, PI)
HMM.viterbi(Q, V, A, B, O, PI)      
delta1(1)=pi1 * b1(o1)=0.20 * 0.50=0.10
psis1(1)=0
delta1(2)=pi2 * b2(o1)=0.40 * 0.40=0.16
psis1(2)=0
delta1(3)=pi3 * b3(o1)=0.40 * 0.70=0.28
psis1(3)=0
delta2(1)=max[delta1(j)aj1]b1(o2)=0.06*0.50=0.02800
psis2(1)=argmax[delta1(j)aj1]=3
delta2(2)=max[delta1(j)aj2]b2(o2)=0.08*0.60=0.05040
psis2(2)=argmax[delta1(j)aj2]=3
delta2(3)=max[delta1(j)aj3]b3(o2)=0.14*0.30=0.04200
psis2(3)=argmax[delta1(j)aj3]=3
delta3(1)=max[delta2(j)aj1]b1(o3)=0.02*0.50=0.00756
psis3(1)=argmax[delta2(j)aj1]=2
delta3(2)=max[delta2(j)aj2]b2(o3)=0.03*0.40=0.01008
psis3(2)=argmax[delta2(j)aj2]=2
delta3(3)=max[delta2(j)aj3]b3(o3)=0.02*0.70=0.01470
psis3(3)=argmax[delta2(j)aj3]=3
delta4(1)=max[delta3(j)aj1]b1(o4)=0.00*0.50=0.00189
psis4(1)=argmax[delta3(j)aj1]=1
delta4(2)=max[delta3(j)aj2]b2(o4)=0.01*0.60=0.00302
psis4(2)=argmax[delta3(j)aj2]=2
delta4(3)=max[delta3(j)aj3]b3(o4)=0.01*0.30=0.00220
psis4(3)=argmax[delta3(j)aj3]=3
[[0.1      0.028    0.00756  0.00189 ]
 [0.16     0.0504   0.01008  0.003024]
 [0.28     0.042    0.0147   0.002205]]
[[0. 3. 2. 1.]
 [0. 3. 2. 2.]
 [0. 3. 3. 3.]]
i4=argmax[deltaT(i)]=2
i3=psis4(i4)=2
i2=psis3(i3)=2
i1=psis2(i2)=3
狀态序列I:[[3. 2. 2. 2.]]      

習題 10.2

Q = [1, 2, 3]
V = ['紅', '白']
A = [[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]
B = [[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]
O = ['紅', '白', '紅', '紅', '白', '紅', '白', '白']
PI = [[0.2, 0.3, 0.5]]      
HMM.forward(Q, V, A, B, O, PI)
HMM.backward(Q, V, A, B, O, PI)      
alpha1(0)=p0b0b(o1)=0.100000
alpha1(1)=p1b1b(o1)=0.120000
alpha1(2)=p2b2b(o1)=0.350000
alpha1(0)=[sigma alpha0(i)ai0]b0(o1)=0.078000
alpha1(1)=[sigma alpha0(i)ai1]b1(o1)=0.111000
alpha1(2)=[sigma alpha0(i)ai2]b2(o1)=0.068700
alpha2(0)=[sigma alpha1(i)ai0]b0(o2)=0.043020
alpha2(1)=[sigma alpha1(i)ai1]b1(o2)=0.036684
alpha2(2)=[sigma alpha1(i)ai2]b2(o2)=0.055965
alpha3(0)=[sigma alpha2(i)ai0]b0(o3)=0.021854
alpha3(1)=[sigma alpha2(i)ai1]b1(o3)=0.017494
alpha3(2)=[sigma alpha2(i)ai2]b2(o3)=0.033758
alpha4(0)=[sigma alpha3(i)ai0]b0(o4)=0.011463
alpha4(1)=[sigma alpha3(i)ai1]b1(o4)=0.013947
alpha4(2)=[sigma alpha3(i)ai2]b2(o4)=0.008080
alpha5(0)=[sigma alpha4(i)ai0]b0(o5)=0.005766
alpha5(1)=[sigma alpha4(i)ai1]b1(o5)=0.004676
alpha5(2)=[sigma alpha4(i)ai2]b2(o5)=0.007188
alpha6(0)=[sigma alpha5(i)ai0]b0(o6)=0.002862
alpha6(1)=[sigma alpha5(i)ai1]b1(o6)=0.003389
alpha6(2)=[sigma alpha5(i)ai2]b2(o6)=0.001878
alpha7(0)=[sigma alpha6(i)ai0]b0(o7)=0.001411
alpha7(1)=[sigma alpha6(i)ai1]b1(o7)=0.001698
alpha7(2)=[sigma alpha6(i)ai2]b2(o7)=0.000743
beta8(0)=1
beta8(1)=1
beta8(2)=1
beta7(1)=[sigma a1jbj(o8)]beta8(j)=(0.50*0.50*1.00+0.20*0.60*1.00+0.30*0.30*1.00+0)=0.460
beta7(2)=[sigma a2jbj(o8)]beta8(j)=(0.30*0.50*1.00+0.50*0.60*1.00+0.20*0.30*1.00+0)=0.510
beta7(3)=[sigma a3jbj(o8)]beta8(j)=(0.20*0.50*1.00+0.30*0.60*1.00+0.50*0.30*1.00+0)=0.430
beta6(1)=[sigma a1jbj(o7)]beta7(j)=(0.50*0.50*0.46+0.20*0.60*0.51+0.30*0.30*0.43+0)=0.215
beta6(2)=[sigma a2jbj(o7)]beta7(j)=(0.30*0.50*0.46+0.50*0.60*0.51+0.20*0.30*0.43+0)=0.248
beta6(3)=[sigma a3jbj(o7)]beta7(j)=(0.20*0.50*0.46+0.30*0.60*0.51+0.50*0.30*0.43+0)=0.202
beta5(1)=[sigma a1jbj(o6)]beta6(j)=(0.50*0.50*0.21+0.20*0.40*0.25+0.30*0.70*0.20+0)=0.116
beta5(2)=[sigma a2jbj(o6)]beta6(j)=(0.30*0.50*0.21+0.50*0.40*0.25+0.20*0.70*0.20+0)=0.110
beta5(3)=[sigma a3jbj(o6)]beta6(j)=(0.20*0.50*0.21+0.30*0.40*0.25+0.50*0.70*0.20+0)=0.122
beta4(1)=[sigma a1jbj(o5)]beta5(j)=(0.50*0.50*0.12+0.20*0.60*0.11+0.30*0.30*0.12+0)=0.053
beta4(2)=[sigma a2jbj(o5)]beta5(j)=(0.30*0.50*0.12+0.50*0.60*0.11+0.20*0.30*0.12+0)=0.058
beta4(3)=[sigma a3jbj(o5)]beta5(j)=(0.20*0.50*0.12+0.30*0.60*0.11+0.50*0.30*0.12+0)=0.050
beta3(1)=[sigma a1jbj(o4)]beta4(j)=(0.50*0.50*0.05+0.20*0.40*0.06+0.30*0.70*0.05+0)=0.028
beta3(2)=[sigma a2jbj(o4)]beta4(j)=(0.30*0.50*0.05+0.50*0.40*0.06+0.20*0.70*0.05+0)=0.026
beta3(3)=[sigma a3jbj(o4)]beta4(j)=(0.20*0.50*0.05+0.30*0.40*0.06+0.50*0.70*0.05+0)=0.030
beta2(1)=[sigma a1jbj(o3)]beta3(j)=(0.50*0.50*0.03+0.20*0.40*0.03+0.30*0.70*0.03+0)=0.015
beta2(2)=[sigma a2jbj(o3)]beta3(j)=(0.30*0.50*0.03+0.50*0.40*0.03+0.20*0.70*0.03+0)=0.014
beta2(3)=[sigma a3jbj(o3)]beta3(j)=(0.20*0.50*0.03+0.30*0.40*0.03+0.50*0.70*0.03+0)=0.016
beta1(1)=[sigma a1jbj(o2)]beta2(j)=(0.50*0.50*0.02+0.20*0.60*0.01+0.30*0.30*0.02+0)=0.007
beta1(2)=[sigma a2jbj(o2)]beta2(j)=(0.30*0.50*0.02+0.50*0.60*0.01+0.20*0.30*0.02+0)=0.007
beta1(3)=[sigma a3jbj(o2)]beta2(j)=(0.20*0.50*0.02+0.30*0.60*0.01+0.50*0.30*0.02+0)=0.006
P(O|lambda)=0.2*0.5*0.00698+0.3*0.4*0.00741+0.5*0.7*0.00647+0=0.003852      

參考資料

繼續閱讀