天天看點

如何用Python畫各種著名數學圖案 | 附圖+代碼

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼:46 lines (34 sloc)  1.01 kb

'''

a fast mandelbrot set wallpaper renderer

reddit discussion: https://www.reddit.com/r/math/comments/2abwyt/smooth_colour_mandelbrot/

import numpy as np

from pil import image

from numba import jit

maxiters = 200

radius = 100

@jit

def color(z, i):

v = np.log2(i + 1 - np.log2(np.log2(abs(z)))) / 5

if v < 1.0:

return v**4, v**2.5, v

else:

v = max(0, 2-v)

return v, v**1.5, v**3

def iterate(c):

z = 0j

for i in range(maxiters):

if z.real*z.real + z.imag*z.imag > radius:

return color(z, i)

z = z*z + c

return 0, 0 ,0

def main(xmin, xmax, ymin, ymax, width, height):

x = np.linspace(xmin, xmax, width)

y = np.linspace(ymax, ymin, height)

z = x[none, :] + y[:, none]*1j

red, green, blue = np.asarray(np.frompyfunc(iterate, 1, 3)(z)).astype(np.float)

img = np.dstack((red, green, blue))

image.fromarray(np.uint8(img*255)).save('mandelbrot.png')

if __name__ == '__main__':

main(-2.1, 0.8, -1.16, 1.16, 1200, 960)

多米諾洗牌算法

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼連結:https://github.com/neozhaoliang/pywonderland/tree/master/src/domino

正二十面體萬花筒

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼:53 lines (40 sloc)  1.24 kb

a kaleidoscope pattern with icosahedral symmetry.

from matplotlib.colors import hsv_to_rgb

def klein(z):

'''klein's j-function'''

return 1728 * (z * (z**10 + 11 * z**5 - 1))**5 / \

(-(z**20 + 1) + 228 * (z**15 - z**5) - 494 * z**10)**3

def riemannsphere(z):

   map the complex plane to riemann's sphere via stereographic projection

   '''

t = 1 + z.real*z.real + z.imag*z.imag

return 2*z.real/t, 2*z.imag/t, 2/t-1

def mobius(z):

   distort the result image by a mobius transformation

return (z - 20)/(3*z + 1j)

def main(imgsize):

x = np.linspace(-6, 6, imgsize)

y = np.linspace(6, -6, imgsize)

z = riemannsphere(klein(mobius(klein(z))))

# define colors in hsv space

h = np.sin(z[0]*np.pi)**2

s = np.cos(z[1]*np.pi)**2

v = abs(np.sin(z[2]*np.pi) * np.cos(z[2]*np.pi))**0.2

hsv = np.dstack((h, s, v))

# transform to rgb space

img = hsv_to_rgb(hsv)

image.fromarray(np.uint8(img*255)).save('kaleidoscope.png')

import time

start = time.time()

main(imgsize=800)

end = time.time()

print('runtime: {:3f} seconds'.format(end - start))

newton 疊代分形 

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼:46 lines (35 sloc)  1.05 kb

import matplotlib.pyplot as plt

# define functions manually, do not use numpy's poly1d funciton!

@jit('complex64(complex64)', nopython=true)

def f(z):

# z*z*z is faster than z**3

return z*z*z - 1

def df(z):

return 3*z*z

@jit('float64(complex64)', nopython=true)

def iterate(z):

num = 0

while abs(f(z)) > 1e-4:

w = z - f(z)/df(z)

num += np.exp(-1/abs(w-z))

z = w

return num

def render(imgsize):

x = np.linspace(-1, 1, imgsize)

y = np.linspace(1, -1, imgsize)

z = x[none, :] + y[:, none] * 1j

img = np.frompyfunc(iterate, 1, 1)(z).astype(np.float)

fig = plt.figure(figsize=(imgsize/100.0, imgsize/100.0), dpi=100)

ax = fig.add_axes([0, 0, 1, 1], aspect=1)

ax.axis('off')

ax.imshow(img, cmap='hot')

fig.savefig('newton.png')

render(imgsize=400)

print('runtime: {:03f} seconds'.format(end - start))

李代數e8 的根系

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼連結:https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/e8.py

模群的基本域 

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼連結:

https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/modulargroup.py

彭羅斯鋪砌 

如何用Python畫各種著名數學圖案 | 附圖+代碼

https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/penrose.py

wilson 算法 

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼連結:https://github.com/neozhaoliang/pywonderland/tree/master/src/wilson

反應擴散方程模拟

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼連結:https://github.com/neozhaoliang/pywonderland/tree/master/src/grayscott

120 胞腔

如何用Python畫各種著名數學圖案 | 附圖+代碼

代碼:69 lines (48 sloc)  2.18 kb

# pylint: disable=unused-import

# pylint: disable=undefined-variable

from itertools import combinations, product

from vapory import *

class penrose(object):

grids = [np.exp(2j * np.pi * i / 5) for i in range(5)]

def __init__(self, num_lines, shift, thin_color, fat_color, **config):

self.num_lines = num_lines

self.shift = shift

self.thin_color = thin_color

self.fat_color = fat_color

self.objs = self.compute_pov_objs(**config)

def compute_pov_objs(self, **config):

objects_pool = []

for rhombi, color in self.tile():

p1, p2, p3, p4 = rhombi

polygon = polygon(5, p1, p2, p3, p4, p1,

texture(pigment('color', color), config['default']))

objects_pool.append(polygon)

for p, q in zip(rhombi, [p2, p3, p4, p1]):

cylinder = cylinder(p, q, config['edge_thickness'], config['edge_texture'])

objects_pool.append(cylinder)

for point in rhombi:

x, y = point

sphere = sphere((x, y, 0), config['vertex_size'], config['vertex_texture'])

objects_pool.append(sphere)

return object(union(*objects_pool))

def rhombus(self, r, s, kr, ks):

if (s - r)**2 % 5 == 1:

color = self.thin_color

color = self.fat_color

point = (penrose.grids[r] * (ks - self.shift[s])

- penrose.grids[s] * (kr - self.shift[r])) *1j / penrose.grids[s-r].imag

index = [np.ceil((point/grid).real + shift)

for grid, shift in zip(penrose.grids, self.shift)]

vertices = []

for index[r], index[s] in [(kr, ks), (kr+1, ks), (kr+1, ks+1), (kr, ks+1)]:

vertices.append(np.dot(index, penrose.grids))

vertices_real = [(z.real, z.imag) for z in vertices]

return vertices_real, color

def tile(self):

for r, s in combinations(range(5), 2):

for kr, ks in product(range(-self.num_lines, self.num_lines+1), repeat=2):

yield self.rhombus(r, s, kr, ks)

def put_objs(self, *args):

return object(self.objs, *args)

原文釋出時間為:2017-04-15

本文來自雲栖社群合作夥伴“大資料文摘”,了解相關資訊可以關注“bigdatadigest”微信公衆号