题意
一副不含王的扑克牌由52张牌组成,由红桃、黑桃、梅花、方块4组牌组成,每组13张不同的面值。现在给定52
张牌中的若干张,请计算将它们排成一列,相邻的牌面值不同的方案数。
牌的表示方法为XY,其中X为面值,为2、3、4、5、6、7、8、9、T、J、Q、K、A中的一个。Y为花色,为S、
H、D、C中的一个。如2S、2H、TD等。
第一行为一个整数T,为数据组数。
之后每组数据占一行。这一行首先包含一个整数N,表示给定的牌的张数,接下来N个由空格分隔的字符串,每个字符串长度为2,表示一张牌。每组数据中的扑克牌各不相同。
对于每组数据输出一行,形如"Case #X: Y"。X为数据组数,从1开始。Y为可能的方案数,由于答案可能很大,
请输出模2^64之后的值。
1 ≤ T ≤ 20000,1 ≤ N ≤ 52
分析
由于相同种类的牌的牌数只有1-4,而方案数容斥跟牌数相关,所以考虑以牌数建立状态。设\(F[a][b][c][d]\),表示1张的有a种,2张的有b种,3张的有c种,4张的有d种。
考虑如何容斥。首先如果放的是1张牌的,就只有a种方案。当牌数大于1时,用一个决策后的状态计算,要减去它转移到的不合法的状态。
代码